10 Axiomas de Algebra Lineal

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Qual é la definizione de Closure Under Addition?

  • U+V = V+U
  • U+(-U) = (0 vector)
  • U+V = U
  • U+V = in le spatio vectorial (correct)

Qual es la definizione de Communitive Property?

U+V = V+U

Qual es la definizione de Associative Property?

U+(V+W) = (U+V)+W

Qual es la definizione de Additive Identity?

<p>U+(0 vector) = U</p> Signup and view all the answers

Qual es la definizione de Additive Inverse?

<p>U+(-U) = (0 vector)</p> Signup and view all the answers

Qual é la definizione de Closure under multiplication?

<p>C*U = in le spatio vectorial (D)</p> Signup and view all the answers

Qual es la definizione de Distributive Property (C(U+V))?

<p>C(U+V) = CU+CV</p> Signup and view all the answers

Qual es la definizione de Distributive Property (U(C+D))?

<p>U(C+D) = UC+UD</p> Signup and view all the answers

Qual es la definizione de Associative Property (C(D*U))?

<p>C(D<em>U) = C</em>D(U)</p> Signup and view all the answers

Qual es la definizione de Multiplication Identity?

<p>(1)*U = U</p> Signup and view all the answers

Flashcards are hidden until you start studying

Study Notes

Proprietates de Espacios Vectorial

  • Closure Under Addition: Si U e V es vectores, alors U+V pertene al espacio vectorial.

  • Proprietate Commutativ: La addition de vectores es commutativ, implicante que U+V es equal a V+U.

  • Proprietate Associativ: La addition es associativ, significa que U+(V+W) es equal a (U+V)+W.

  • Identitate Additiv: Exista un vetor null, 0, tal que U+(0 vector) resulta in U, mantenente U invariabil.

  • Inverse Additiv: Per cada vetor U, existe un vetor -U tal que U+(-U) resulta in (0 vector).

  • Closure Under Multiplication: Multiplicando un escalar C con un vetor U resulta in un prodotto que pertenece al espacio vectorial.

  • Proprietate Distributiv (Addition): Multiplicando un escalar C con la suma de dos vectores U e V resulta in C(U+V) = CU + CV.

  • Proprietate Distributiv (Escalar): Multiplicando un vetor U con la somma de dos scalares C e D resulta in U(C+D) = UC + UD.

  • Proprietate Associativ (Multiplicacion): Multiplicando un escalar C con un producto DU resulta in C(DU) = C*D(U).

  • Identitate Multiplicativ: Multiplicando un vetor U per l'escalaire 1 produz U invariabil, (1)*U = U.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Exploring Vector Spaces in Linear Algebra
10 questions
Vector Spaces Flashcards (Linear Algebra)
15 questions
Linear Algebra: Vector Spaces
16 questions
Use Quizgecko on...
Browser
Browser