运动学,速度,和向量基础

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

在公式中,以下哪个是速度的符号?

  • v (correct)
  • t
  • a
  • d

SUVAT代表位移、时间、加速度、初速度和末速度。

True (A)

运动学研究什么?

运动学研究物体的运动及其发生方式。

速度的单位是______。

<p>米/秒</p> Signup and view all the answers

将以下前缀与其对应的数量级匹配:

<p>千兆 (G) = 10^9 兆 (M) = 10^6 千 (k) = 10^3 毫 (m) = 10^-3</p> Signup and view all the answers

以下哪个不是基本单位?

<p>牛顿 (N) (B)</p> Signup and view all the answers

视差是指物体在不同视角下的位置变化。

<p>True (A)</p> Signup and view all the answers

线性关系在物理学中如何表示?

<p>线性关系在物理学中通过直线图表示。</p> Signup and view all the answers

匀速运动的公式是v = ______。

<p>s/t</p> Signup and view all the answers

标量和矢量之间的主要区别是什么?

<p>矢量有方向,而标量没有。 (C)</p> Signup and view all the answers

相对运动中,如果观察者在运动,则速度总是0。

<p>False (B)</p> Signup and view all the answers

如何简化平均速度的表达式?

<p>平均速度通常简化为Vave。</p> Signup and view all the answers

要将24000厘米转换为兆米,结果是______ Mm。

<p>0.00024</p> Signup and view all the answers

下列哪项准确描述了如何使用图表来说明物体运动?

<p>绘制说明该想法的图表,包括数据表,并编写一个结论句子。 (B)</p> Signup and view all the answers

如果物体在空中飞行并试图对抗重力,那么该物体的能量将为正9.81 m/s^2。

<p>False (B)</p> Signup and view all the answers

Flashcards

速度(Speed)是什么?

表示物体移动速度的快慢,常以米每秒(m/s)为单位。

速度(Velocity)是什么?

包含物体速度和方向的物理量。

位移(Displacement)是什么?

物体位置的变化量,包含大小和方向。

运动学(Kinematics)是什么?

描述运动的物理学分支,研究物体如何运动。

Signup and view all the flashcards

公制系统是什么?

一种测量系统,基于十进制单位变化。

Signup and view all the flashcards

视差(Parallax)是什么?

由于视角变化,物体位置产生的明显移动。

Signup and view all the flashcards

线性关系是什么?

物理学中描述变量之间直线关系的一类关系。

Signup and view all the flashcards

二次关系是什么?

描述因变量与自变量平方成正比的关系。

Signup and view all the flashcards

标量(Scalar)是什么?

只有大小,没有方向的物理量。

Signup and view all the flashcards

矢量(Vectors)是什么?

既有大小,又有方向的物理量。

Signup and view all the flashcards

相对运动是什么?

一个物体相对于另一个物体的运动。

Signup and view all the flashcards

平均速率是什么?

描述一段时间内平均的速度变换。

Signup and view all the flashcards

加速度是什么?

速度随时间的变化率。

Signup and view all the flashcards

自由落体是什么?

物体仅受重力作用下的运动。

Signup and view all the flashcards

抛射运动是什么?

以一定角度抛出的物体的运动。

Signup and view all the flashcards

Study Notes

  • These notes cover basic physics concepts, including kinematics, vectors, motion, and forces.

Formula Symbols

  • v = 速度 (velocity)
  • t = 时间 (time)
  • a = 加速度 (acceleration)
  • d = 距离 (distance)

SUVAT

  • SUVAT is an acronym used in kinematics to represent:
    • s = 位移/距离 (displacement/distance)
    • t = 时间 (time)
    • a = 加速度 (acceleration)
    • u = 初速度 (initial velocity)
    • v = 末速度 (final velocity)
  • "Initial" refers to data at the beginning of a scenario.

运动学 (Kinematics)

  • 描述物体运动的物理学分支 (Physics that deals with the description of motion)
  • 速度 (Speed): indicates how fast an object is moving, typically measured in 米/秒 (m/s)
  • 速率 (Velocity): Speed in a specific direction, also measured in 米/秒 (m/s), considered a 向量 (vector)
  • 曲线速度 (Curve Velocity):通过曲线形状计算面积和距离 (calculating area and distance using the shape of a curve)
  • 位移 (Displacement): The change in position with magnitude, also a 向量 (vector)

向量 (Vectors)

  • 单位含有方向和大小 (Units with both direction and magnitude)

公制系统 (Metric System)

  • 基于基本单位的变化 (Change of Length in different space)
    • 基本单位包括 米 (m), 克 (g), 升 (litres), 秒 (seconds), 牛顿 (Newtons (N)), m, g, l, and sec. are fundamental units
    • 牛顿 (Newtons) 不是基本单位 (not a fundamental unit).
  • 从大到小 (From Bigger to Smaller): giga(G), mega(M), kilo(k), hecto(h), deca(d), base(mid), deci(d), centi(c), milli(m), micro, nano(n)
  • These terms are of Greek origin.
  • 单位可转换为米制 (Units can be converted, representing values in meters)
    • Ex: 24000 cm = 0.00024 Mm

视差 (Parallax)

  • 从不同角度观察物体时位置的偏移 (Shift in object position when viewed from different angles)

物理与数学 (Physics and Math)

  • They are related through 方程 (equations)

线性关系 (Linear Relationship)

  • 物理图像呈直线 (Physics graph is a straight line)
    • 正比关系 (Direct Relationship): x and y 轴 (axis), starts from zero
    • 反比关系 (In direct): lines are not from 0 0
  • 斜率公式 (Equation form of slope):
    • 用于线性关系 (used for a linear graph) -y=mx+b, where m = slope and y = dependent variable
  • 斜率查找(How to find slope): 升/跑 (rise/run)

匀速 (Uniform Speed)

  • 公式是 v=s/t (formula v=s/t).

反比关系 (Inverse Relationship)

  • 可以是 xy=k 或 y = k/x (equation that can be xy=k or y = k/X)
    • 可以改变方程的变量 (you can adjust the variables of the the equation)
    • 有些变量不能改变 (some variables cannot change)
  • 图形包含曲线 (graphs use curve lines)
    • 曲线不会接触graph上的任何点 (the line won't touch any point on the graph)

三角符号 (Triangle Symbol)

  • 表示变量的变化 (Indicates change in that symbol)
    • 时间变化 (change of time) or 速度变化 (change of speed).)

二次 (Quadratic)

  • Form: y=kx^2
  • 图形以点开始,然后弯曲 (Graphs start at a point and then curve)

描述运动 (Describing Motion)

  • 通过图像、数据表格和公式进行说明 (Illustrate with graphs, data tables, and equations)
  • Write a conclusion sentence.

单位转换 (Unit Conversions)

  • 1000 m = 1 km
  • 100 cm = 1 m
  • 100000 cm = 1 km
  • If converting to a higher metric, divide by 1000, 100, or 100000.
  • If converting to a lower metric, multiply by 1000, 100, or 100000.

标量和向量 (Scalars and Vectors)

  • 标量 (Scalar): only has magnitude.
  • 向量 (Vectors): magnitude and direction.
  • 向量 (Vectors)方向不同于标量 (scalars), vectors have a direction.
  • 标量和向量的符号相同,向量符号上方有箭头 (symbols are the same, but vectors have an arrow).

相对运动 (Relative Motion)

  • 物体相对于另一个物体的运动 (Motion of one object relative to another)
  • if it is the first object, the motion is Formula: (u-v)m/s -If it's the second object moving in the opposite direction is, Formula: (u+v)m/s, if people is looking the velocity is 0.

平均速度 (Average Velocity)

  • 公式 (Formula): 位移变化/时间变化 (change in distance/change in time)
    • 用于计算平均速度 (used to find average change)
  • 恒定速度意味着数据具有恒定的速度 (Same average velocity means constant velocity)
  • 速度变化率 (rate of change in an objects position)
  • 简化版:Vave (Simplified version: Vave)

斜率符号 (Different Symbols for Slope)

  • 上坡 +(Uphill slope: +)
  • 下坡 -(Downhill slope: -)
  • 没有变化的斜坡 0 (No Change: 0)
  • 不移动 (if not moving)

位置(位移)时间图 (Position (Displacement) Time Graph)

  • 显示速度 (shows the speed)
    • 比较两个物体的相交点,显示距离和时间之间的关系
    • (Compare intersect points of 2 objects, shows relationship between distance and time)
    • 数据可用于计算平均速度 (data can calculate average velocity.)
  • 比较两个对象 (Compare 2 objects): 线可以是线性或曲线 (lines can be linear or curved).
    • 内插值可能包含小数 (interpolation can contains decimals).
  • 简化距离-时间图 (simplified d-t graph.)
  • 斜率是物体的速度 (slope is the velocity of an object).
  • 可以使用数据表显示 (can be shown with a data table.)

速度-时间图 (Velocity-Time Graph)

  • 显示速度和时间之间的关系 (shows the relationship between speed and time.)
  • 速度时间图的斜率 (Slope of velocity-time graph:)
    • 斜率=加速度 (slope = acceleration.)
      • Formual= acceleration is a times change of time = final velocity - inital velocity.
    • 公式可以转化为 (formula can be converted. to:) a= change in velocity / change of time
      • 加速度=速度变化/时间变化 (accelaration = change in velocity / change in time.) -时间变化=最终时间-初始时间 (Change of time = final time - initial time) -加速 (Accelerate.)

速度时间图的面积 (Area of the v-t graph:)

  • 面积 (area) = 物体移动的距离 (Distance Travel by the object.)
  • 距离=时间变化 *(最终速度+初始速度)/2 (d= change in time (vf+vi)/2) -时间变化=最终时间-初始时间 (change in time= time final - time initial.)
  • 速度变化=最终速度-初始速度 (change in velocity= velocity final- velocity initial.)

加速度和距离 (Acceleration and Distance Traveled)

  • 当寻找加速度和距离时 (When you are finding acceleration and distance.)
    • d= 初始速度*时间变化+(加速度(时间变化^2))/ 2 (d= velocity initial times change in time +(acceleration times ( change in time)^2)/2)
    • 初始速度=原始速度 (Velocity initial= original velocity)
    • 距离 (Distantion)

加速度和时间 (Acceleration and Time Traveled)

  • 当寻找时间和加速度时 (When finding the time and acceleration.)
  • 2ad = (最终速度)^2(-初始速度)^2((v final)^2 - (V initial)^2)
  • 加速度 = 速度变化/时间变化 (a= acceleration = change in velocity/ change in time)
  • 距离 (Distantion)

初始速度 (Velocity Initial)

  • 距离=(最终速度*时间变化)- (加速度(时间变化)^2)/2 (distance= (velocity final times change of time)- (a(change of time)^2)/2)
  • 加速度 = 速度变化/时间变化 (a = acceleration= change of velocity/ change of time)
  • 距离 (Distantion)

最终速度 (Final Velocity)

  • at+initial velocity

加速度 (Acceleration)

  • 速度变化(速度和位置)(The change of velocity ( speed and location ))
    • 公式 (Formula:)
      • 加速度=速度变化/时间 (a= change in velocity / time), 可以变成: 加速度*时间=速度变化(which can be: a x time= change in velocity.)

自由落体物体 (Free Falling Object)

  • 由于重力,加速度会发生 (Acceleration happens due to gravity.)
    • 近地重力:9.81 m/s^2 (Near earth: 9.81 m/s^2)
  • 用于自由落体的5个加速度公式 (5 acceleration formulas for free-falling):
    • 重力 (gravity:)g=速度变化/时间 (g= change in velocity/ change in time.)

抛掷运动 (Tossed Motion)

  • 不等于零 (not equal to zero)
  • 向上运动的时间应该与向下运动的时间相同 (the time of going up should be the same as the time going down)
    • 减速 (Deceleration): -9.81m/s^2
      • 上升:v=0 (Going up: v=0)
    • 加速 (Acceleration): 9.81, 落下:u=0 (going down:) if a objec fly above and try to fight gravity the energy will be -9.81 m/s^2, the objec will decelerate. Velocity become O or get into minus -当球到达最高点时,速度=0 (When the ball arrives at the top point, the velocity=0)

抛体运动 (Projectile Motion)

  • 水平抛体 (Horizontal projectile:)
    • 从物体上掉落的两个物体会水平移动 (two things drop from a object that will move horizontally.)
    • 通过移动物体的抛射物会撞击地面 (the projectile gets strike to the ground by the object that moves horizontally.)
    • 同时掉落和击中 (drop and hit at the same time.) -由于相同的重力和相同的时间,下降所需的时间也相同 (due to same gravity and same time, same time taking to drop) -物体的速度在水平方向上是不变的,除非受到外力作用 (an object's speed will be constant when going horizontally unless external force.)
    • 重力是其中之一 (Gravity is one of it)

加速 (Acceleration:)

  • 速度的变化和位置/大小 (The change of speed and it's position/magnitude.
  • a=速度变化/时间 (a=change in velocity/time taken)

力 (Forces)

  • 动力学 (Dynamics:):
    • 研究运动发生的原因 (study of why motion occurs)
  • 牛顿运动定律 (Newton's Law of Motion:)
    • 艾萨克·牛顿 (Issac Newton)
      • 研究力和物体之间的相互作用 (Study of interactions between forces and objects)
        • 四种主要类型力 (The 4 major types (4 forces)):
    • 重力 (gravitational forces:) 最弱的 (weakest of all.) 可以观察和看到 (you can observe and see it.)
    • 重力=9.81-下落 (gravity a = 9.81- falling)
    • 例如:岩石落到地球上 (example:)
    • 电磁力 (Electromagnetic forces):
    • 磁铁 (magnets)
    • 铁和磁铁可以粘在一起 (iron and magnet can stick together)
    • 强核力 (strong nuclear forces:)
      • 将粒子保持在一起的力 (force that hold particles together.)
        • 在原子核中 (in the nucleus)
    • 弱核力 (weak nuclear forces:) - 原子核的自然衰变 (natural decay of an nucleus in an atom.) - 逃逸粒子的较弱力 (weaker force that particle escapes.)
  • 能量 (Energy:) -vector with magnitude and direction
    • Vectors

惯性 (Inertia:)

  • 物体的性质,以恒定的速度静止或移动,而不受任何影响 (nature of objects that rest or move at a constant speed.)
    • 没有其他力的作用下,物体将以恒定的速度移动 (without any other force, an object will move at a constant speed.)
    • 如果没有任何影响,物体将保持静止 (object will remain rest if nothing is affecting it.)
    • 质量越大,惯性越高 (the greater the mass, the higher the inertia is.)

牛顿三大运动定律 (Newton's 3 Laws of Motion:)

  • 一维运动定律 (1st Law:) 法则
    • 惯性定律 (law of inertia.)
      • 如果力平衡,所有物体保持静止或以恒定速度移动 (object will remain at rest or move at constance spedd if the force is balance.)
      • 如果力不平衡,力可能会加速 ( the force might accelerate if the force is unbalance.)
  • 二维运动定律 (2nd Law:)
  • 力=质量*加速度 (F=ma)
    • 力=净力 (F= net force.)
      • 以牛顿为单位计算 (calculated in newtons)
    • 质量=m (m=mass)
      • 有多重 ( how heavy it is,) 按千克测量 (measured by kg)
    • 加速度是物体的加速度 ( a= acceleration of the object.)
    • 加速度应与净力成正比 (acceleration should be propertional to net fore.)
  • 3rd Law of Motion
    • Action-reaction law An equal and oppostite force to every action force.
      • 力会反弹回本身 (the force will bounce back to yourself)
        • 或者,反弹回另一种类型的力量 (or bounce back to another type of force.)
        • 例如:当你击打石头时,你的手会受到很大的痛苦 (ex: when you hit a stone, your hand will suffer in great pain.)

2 dimensional motions

  • 通过图形计算向量 (Solving vectors graphically:)
    • 标量 (scalars:) 物理量仅按大小描述 (physical quantities only described by magnitude.)
    • 向量 (vector:) 按大小和方向描述的物理量,位置箭头 (physical quantities that describe by both magnitude and direction: position arrow.)
      • 显示方向 (shows the direction)
      • 与算术加法不相等 (does not equal arithmic addition.)
        • 总和 (Sum)
          • 排除一个维度 (one dimension is excluded.)
            • 当问题假设方向时,就会发生这种情况 (if the question is assume direcitons)

计算向量

  • 计算时 (When calcuating:) 可以按照任何顺序完成 (can be done in every orders)
  • 它们可以使用角度 (they can be used in angles:) -Straight north is 90 degree'
    • 35 degree west of south is 235 degrees

###For Postion: Position arrows can be used

  • 显示方向和大小 (shows the direction and magnitude:) -where there're heads and tails - Heads always displays the position to the back - Tails show Position (east, south, west, north)

如果距离的位置包括东西方 (if position includes west or east:)

  • 使用勾股定理计算 (calculate it the Pythagorean theorem)
  • 您还需要包含距离和执行动作的角度。 (Need to include both angle and distance of what's being excuted) -您只需要对南北或东西进行减法或抽象。(just need to do subtraction or abstraction for north or south or west and east)
  • 例子:一个男孩向北走3公里,然后向南走2.5公里。他的位移是多少?( Example: A boy walks 3 km north then 2.5km south. What's his displacement?)
    • 3 3-2.5=0.5 north
    • 答案也是肯定的 (the anwser is possitive.)

向量问题 (Vector problems)

  • 向量分量相加 (Vector quantities addition:)
    • adding xy.
  • Beaning
    • 使用勾股定理求总距离 (use Pythagorean theorem to find the total distance)
    • 然后使用三角函数来求角度 (use trigonometry to find the angles.)
    • 如果是非直角三角形,就用余弦和正弦的乘积 (use cosine and sine law when its a nonright triangle) -物体抛射时的启动角度 (Object Launched at an Angle:)

速度-时间问题 (Velocity-Time Problems)

  • 当船移动时,从船底到船的不同部分的时间是相同的 (When a boat is moving, time of going from the base to different parts of the boat is the same.)
    • 对于某些部分而言并非如此 (Not for some of its part:)
      • 仍然是匀速运动 (Still Constant Motion.)
      • 角度发生变化时可以改变方向 (can change direction when the angle is changed)
      • 可以通过2个方向分量启动 (can be launched by 2 direction component:) -垂直运动 (vertical motion) - 通过重力 (by gravity)
  • 水平运动 (horizontl motion.)
  • 初始速度 (inital velocity)
  • 上升角度 (Upward Angles.)
    • 使用勾股定理计算或者三角函数 (use the Pythagorean theorem)

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

More Like This

Kinematics and Vectors Quiz
16 questions
Physics Class on Vectors and Forces
13 questions
Kinematics and Motion Quiz
5 questions
Vectors and Motion
10 questions

Vectors and Motion

SaneNirvana7195 avatar
SaneNirvana7195
Use Quizgecko on...
Browser
Browser