概率模型、极限、积分、矩阵和微分方程

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

  • (correct)

AmnAP(A)

P(A) = m/n


()

0/0 ______

<p><code>/</code></p> Signup and view all the answers

lim (sin x)/x x 0

<p>1 (D)</p> Signup and view all the answers

lim (1 + 1/x)^x x 1

<p>False (B)</p> Signup and view all the answers

$\sum_{i=1}^{\infty} u_i$ Sk $\sum_{i=1}^{\infty} ku_i$

<p>kS</p> Signup and view all the answers

$\sum_{n=1}^{\infty} u_n$ $\sum_{n=1}^{\infty} v_n$ $\sum_{n=1}^{\infty} (u_n v_n)$ ______

Signup and view all the answers

U w v

<p>False (B)</p> Signup and view all the answers

$\sum_{n=1}^{\infty} v_n$ lim v (n)

<p>0</p> Signup and view all the answers

$\sum_{n=1}^{\infty} u_n$ Nn>NP |u + u + ... + u| < ______

Signup and view all the answers

$\sum_{n=1}^{\infty} u_n$ lim (u / u) (n) > 1

Signup and view all the answers

$\sum_{n=1}^{\infty} u_n$ lim (u)^(1/n) (n) = > 1 ______

Signup and view all the answers

(1) u u (n=1,2,3) (2) lim u (n) = 0

<p>(A)</p> Signup and view all the answers

$\sum_{n=1}^{\infty} |u_n|$ $\sum_{n=1}^{\infty} u_n$

Signup and view all the answers

$\int_a^a f(x) dx$ ______

<p>0</p> Signup and view all the answers

$\int_a^b f(x) dx$

<p>-$\int_b^a f(x) dx$ (B)</p> Signup and view all the answers

F(x)[a, b]f(x)0,f(x)dx < 0

<p>False (B)</p> Signup and view all the answers

F(x) $\int_{-a}^a f(x) dx$ ______

<p>0</p> Signup and view all the answers

A, Bsn ,

<p>A + B = B + A (B)</p> Signup and view all the answers

Flashcards

基本事件的特点

基本事件是不能再分解的事件,任何两个基本事件互斥,任何事件都可以表示成基本事件的和。

古典概型

试验的所有可能结果只有有限个,且每个试验结果出现的可能性相等。

古典概型概率计算

如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1/n;如果某个事件A包括的结果有m个,那么事件A的概率P(A) = m/n.

几何概型

每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例。

Signup and view all the flashcards

几何概型的特点

在一次试验中,可能出现的结果有无限多个,且每个结果的发生具有等可能性。

Signup and view all the flashcards

几何概型概率计算公式

P(A) = 构成事件A的区域测度/试验全部结果构成的区域测度(长度、面积、体积等)

Signup and view all the flashcards

洛必达法则

在分子与分母导数都存在的情况下,分别对分子分母进行求导运算,直到该极限的类型为可以直接代入求解即可.

Signup and view all the flashcards

洛必达法则适用类型

洛必达法则通常适用于0/0型或者是∞/∞型极限。

Signup and view all the flashcards

求0/0或∞/∞型极限的方法

通过恒等变形约去分子、分母中极限为零或无穷的因子,然后利用四则运算法则/利用洛必达法则/变量替换与重要极限/等价无穷小因子替换。

Signup and view all the flashcards

求0*∞型极限转

根据函数的特点先将0*∞型化为0/0或∞/∞型

Signup and view all the flashcards

求∞-∞型极限

通过适当的方法将其化为0/0或∞/∞型。若是两个分式函数之差,则通分转化,若是与根式函数之和、差有关的,则需用分子有理化方法转化。

Signup and view all the flashcards

两个重要极限

lim(x→0) sin(x)/x = 1, lim(x→∞) (1 + 1/x)^x = e (或lim(x→0) (1+x)^(1/x) = e ).

Signup and view all the flashcards

级数的敛散性定义

若数项级数∑uᵢ的部分和数列{Sₙ} 的极限存在,即lim(n→∞) Sₙ = S,则称级数∑uᵢ收敛,否则就称级数∑uᵢ发散.

Signup and view all the flashcards

级数收敛

级数∑uᵢ收敛时,称极限值 lim(n→∞) Sₙ = S为此级数和,称rₙ = S - Sₙ = uₙ₊₁ + uₙ₊₂ +...为级数的余项或余和.

Signup and view all the flashcards

几何级数敛散性

∑qⁿ 当|q|<1时收敛,当|q|≥1时发散.

Signup and view all the flashcards

P级数敛散性

∑(1/n^p)当p>1时收敛,当p≤1时发散.

Signup and view all the flashcards

数项级数的基本性质1

如果级数∑uₙ收敛,其和为S,k为常数,则级数∑kuₙ也收敛,其和为kS.

Signup and view all the flashcards

数项级数的基本性质2

若级数∑uₙ与级数∑vₙ,分别收敛于α与β,则级数∑(uₙ±vₙ)收敛于α±β。

Signup and view all the flashcards

数项级数的基本性质3

添加、去掉或改变级数的有限项,级数的敛散性不变。

Signup and view all the flashcards

两边夹定理

uₙ ≤ vₙ ≤wₙ , ∑uₙ和∑wₙ都收敛且收敛到同一个数a,则级数∑vₙ也收敛到a.

Signup and view all the flashcards

级数收敛的必要条件

若级数∑uₙ收敛,则lim(n→∞) vₙ = 0

Signup and view all the flashcards

柯西收敛原理

对于任意给定的正数ɛ,总存在正整数N,使得当n>N时,对于任意的正整数P,都有|uₙ₊₁ + uₙ₊₂ +……+uₙ₊ₚ|<ɛ成立.

Signup and view all the flashcards

正项级数收敛判断

若uₙ ≥0(n=1,2,…),则称∑uₙ为正项级数。正项级数收敛的充分必要条件是它的部分和所成的数列有界。

Signup and view all the flashcards

比较法

设∑uₙ和∑vₙ均为正项级数,且uₙ ≤ vₙ (n = 1,2,…), 如果级数∑vₙ收敛,则级数∑uₙ也收敛;如果级数∑uₙ发散,则级数∑vₙ也发散.

Signup and view all the flashcards

比值法

lim(n→∞)(uₙ₊₁/uₙ)=ρ,则当ρ1时,级数发散;当ρ=1时,级数可能收敛,也可能发散(不用此法判断).

Signup and view all the flashcards

莱布尼茨定理

如果交错级数∑(-1)ⁿ⁻¹uₙ 满足条件:(1) uₙ ≥ uₙ₊₁(n=1,2,3…); (2) lim(n→∞)uₙ = 0, 则级数收敛,且其和s≤u₁,其余项的绝对值|rₙ|≤ uₙ₊₁.

Signup and view all the flashcards

绝对收敛

如果级数∑|uₙ|收敛,则级数∑uₙ也收敛。

Signup and view all the flashcards

条件收敛

如果∑|uₙ|发散,而级数∑uₙ收敛,此时称∑uₙ条件收敛.

Signup and view all the flashcards

奇偶函数积分性质

f(x)为奇函数,则∫f(x)dx = 0; -af(x)为偶函数,则∫f(x)dx=2∫f(x)dx.

Signup and view all the flashcards

变限积分求导

F(x) = ∫f(t)dt, F'(x) = f(b(x))b'(x) – f(a(x))a'(x) .

Signup and view all the flashcards

行列式的基本性质1

行列式的值等于其转置行列式的值,即D = Dᵀ .

Signup and view all the flashcards

行列式的基本性质2

行列式中任意两行(列)位置互换,行列式的值反号。

Signup and view all the flashcards

行列式的基本性质3

若行列式中两行(列)对应元素相同,行列式值为零。

Signup and view all the flashcards

行列式的基本性质4

若行列式中某一行(列)有公因子k,则公因子k可提取到行列式符号外

Signup and view all the flashcards

行列式的基本性质5

行列式中若一行(列)均为零元素,则此行列式值为零。

Signup and view all the flashcards

行列式的基本性质6

行列式中若两行(列)元素对应成比例,则行列式值为零。

Signup and view all the flashcards

矩阵

由数域F中mn个数aᵢⱼ (i=1,2,…, m; j = 1,2,…n)排成的m行n列的矩形数表称为数域F上的一个m×n 矩阵

Signup and view all the flashcards

相等矩阵

设A=(aᵢⱼ)ₛₓₙ与B=(bᵢⱼ)ₛ×ₙ是两个同型矩阵.如果对应的元素都相等,即aᵢⱼ = bᵢⱼ(i = 1,2,..., s; j = 1,2,...,n),

Signup and view all the flashcards

n阶方阵

对A = (aᵢⱼ)ₘₓₙ,当m=n时,则称为n阶矩阵,或叫 n阶方阵.

Signup and view all the flashcards

零矩阵

如果一个矩阵的所有元素都是0,则矩阵称为零矩阵

Signup and view all the flashcards

Study Notes

  • This document provides study notes on classical probability models, geometric probability models, limits, series, the properties of definite integrals, determinants, matrices, linear spaces, and differential equations.

Classical vs. Geometric Probability Models

  • Basic event characteristics: mutually exclusive; any event (except impossible ones) can be expressed as the sum of basic events.
  • Classical probability model: finite, mutually exclusive outcomes.
  • If there are n equally likely outcomes, each basic event has a probability of 1/n.
  • If event A includes m outcomes, then P(A) = m/n.
  • Geometric probability model: Probability proportional to length, area, or volume.
  • Geometric probability characteristics: infinite possible outcomes and equally likely outcomes.
  • Geometric probability calculation: P(A) = (measure of event A's region) / (measure of the entire sample space).

Limits

  • L'Hôpital's Rule: Differentiate numerator and denominator separately until limit type is directly solvable.
  • L'Hôpital's Rule applicable types: 0/0 or ∞/∞.
  • Techniques for 0 * ∞ or ∞/∞ indeterminate form of limits: transform to eliminate factors, L'Hôpital's Rule, variable substitution, or infinitesimal replacement.
  • 0^∞ type limits: similar methods as above, transform to 0/0 or ∞/∞ before applying L'Hôpital's Rule. Complex factors usually become the numerator, especially those containing logarithms.
  • ∞-∞ type limits: transform to 0/0 or ∞/∞. Use common denominator if difference of fractions; rationalize if radicals are present.
  • Two important limits: lim (x→0) sin(x)/x = 1 and lim (x→∞) (1 + 1/x)^x = e.

Series

  • Convergence/divergence definition: If the limit of partial sums exists (S), the series converges.
  • If the series converges to S, then S is the sum of the series and rn = S - Sn is the remainder.
  • Geometric series: converges if |q| < 1, diverges if |q| ≥ 1.
  • P-series: converges if p > 1, diverges if p ≤ 1.
  • Basic properties of number series: If Σun converges to S and k is constant, Σkun also converges to kS
  • If Σun converges to α and Σvn converges to β, then Σ(un ± vn) converges to α ± β
  • Adding, removing, or changing a finite number of terms does not affect convergence
  • Squeeze Theorem: If un ≤ vn ≤ wn, and Σun and Σwn converge to α, Σvn also converges to α.
  • If Σun and Σwn converge; Σvn may or may not converge.
  • Necessary condition for convergence: If Σun converges, then lim (n→∞) un = 0.
  • Cauchy convergence criterion: Σun converges iff for any ε > 0, there's N such that if n > N implies |un+1 + un+2 + ... + un+p| < ε for all positive integers p.
  • Positive term series: Given series Σ un, if un ≥ 0 for all n, then Σun is a positive term series
  • A monotonic and bounded sequence of partial sums is a sufficient and necessary condition.
  • Comparison test: Given positive term series Σun and Σvn with un ≤ vn.
  • If Σvn converges, so does Σun; if Σun diverges, so does Σvn.
  • Ratio test: Let ρ = lim (n→∞) un+1/un. If ρ < 1, the series converges; if ρ > 1 or the limit tends to infinity, it diverges; if ρ = 1, the test is inconclusive.
  • Root test: converges if lim (n→∞) (un)^(1/n) < 1 and diverges if limit > 1; inconclusive if limit is 1.
  • Alternating series test (Leibniz's theorem): For alternating series Σ(-1)^n un where un ≥ un+1 and lim (n→∞) un = 0 then the series converges.
  • Also holds true that |s| ≤ u₁ , and the absolute value of the remainder | rn |≤ U**n+1.
  • Absolute convergence: If Σ|un| converges, Σun also converges.
  • If Σ|un| converges, it is called absolutely convergent.
  • If Σ|un| diverges, but Σun converges, it is called conditionally convergent.

Definite Integrals - Properties

  • ∫[a to a] f(x) dx = 0.
  • ∫[a to b] dx = b - a.
  • ∫[a to b] f(x) dx = -∫[b to a] f(x) dx.
  • ∫[a to b] kf(x) dx = k∫[a to b] f(x) dx.
  • ∫[a to b] f(x) dx = ∫[a to c] f(x) dx + ∫[c to b] f(x) dx.
  • ∫[a to b] [f(x) + g(x)] dx = ∫[a to b] f(x) dx + ∫[a to b] g(x) dx.
  • If f(x) ≥ 0 on [a, b], then ∫[a to b] f(x) dx ≥ 0.
  • If f(x) ≤ g(x) on [a, b], then ∫[a to b] f(x) dx ≤ ∫[a to b] g(x) dx.
  • |∫[a to b] f(x) dx| ≤ ∫[a to b] |f(x)| dx.
  • If m ≤ f(x) ≤ M for x in [a, b], then m(b - a) ≤ ∫[a to b] f(x) dx ≤ M(b - a).
  • Mean value theorem for integrals: There exists ξ in [a, b] such that ∫[a to b] f(x) dx = f(ξ)(b - a). f(x) must be continuous in [a,b]
  • If f(x) is odd, then ∫[-a to a] f(x) dx = 0; if f(x) is even, then ∫[-a to a] f(x) dx = 2∫[0 to a] f(x) dx.

Indefinite Integrals

  • F'(x) = f(b(x))b'(x) – f(a(x))a'(x), where F(x) is integral[a(x), b(x)] of f(t)dt.

Determinants

  • Determinant equals its transpose.
  • Interchanging two rows/columns changes the sign.
  • If two rows/columns are identical, the determinant is zero.
  • A common factor in a row/column can be factored out.
  • If a row/column is all zeros, the determinant is zero.
  • If two rows/columns are proportional, determent value is zero

Matrices

  • Matrix: m x n rectangular array of numbers.
  • Equal matrices: same dimensions and corresponding elements are equal.
  • n-order square matrix if dimensions are nxn
  • Zero matrix: all elements are zero.
  • Symmetric matrix: aij = aji.
  • Anti-symmetric matrix: aij = -aji (diagonal elements are zero).
  • Triangular matrix: Upper triangular has zeros below diagonal; lower triangular has zeros above.
  • Diagonal matrix: non-diagonal elements are zero.

Linear spaces

  • Defined by addition and scalar multiplication operations satisfying specific rules.
  • Includes vector addition, scalar multiplication, zero element, negative element, and associativity/commutativity.
  • Linear Combination: Linear combinations of vectors α₁, α₂, ..., αr (r ≥ 1) are created when there are constants k₁, …,k*, such that α = k₁α₁ + k₂α₂ + … + k α
  • Called the representation of the individual vector, a, by the combination of vector pairs
  • Linear Dependence: Linear dependence occurs within linear space v of within vectors α₁, α₂, ..., αr (r 1) when there are constants k₁, …,k* (not all 0) such that k₁α₁ + k₂α₂ + … + k α=0.
  • This holds true when k = k₂=....=0
  • Dimension: n-demensional if the maximum number of linear independent vectors is n
  • Zero vector is not linearly independent
  • Linear Subspace: a non empty subset that holds true for two conditions
  • Given any vector a in space, w, the scalar product k* a* is present where K is a linear subspace w
  • Given any vector space, a, and b, the vector sum a + b is a linear subspace w
  • Maximal set of linearly independent vectors is equivalent to itself
  • A row that is already equal with the maximal linearily 开发者_如何学Python

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

More Like This

Classical Probability Concepts
6 questions
Classical Probability
6 questions

Classical Probability

CheapestSagacity718 avatar
CheapestSagacity718
Classical Probability Flashcards
19 questions

Classical Probability Flashcards

ImprovingSocialRealism4496 avatar
ImprovingSocialRealism4496
Introduction to Probability
14 questions

Introduction to Probability

RecommendedCerberus9394 avatar
RecommendedCerberus9394
Use Quizgecko on...
Browser
Browser