Podcast
Questions and Answers
- (correct)
AmnAP(A)
AmnAP(A)
P(A) = m/n
()
0/0
______
0/0
______
lim (sin x)/x
x 0
lim (sin x)/x
x 0
lim (1 + 1/x)^x
x 1
lim (1 + 1/x)^x
x 1
$\sum_{i=1}^{\infty} u_i$ Sk $\sum_{i=1}^{\infty} ku_i$
$\sum_{i=1}^{\infty} u_i$ Sk $\sum_{i=1}^{\infty} ku_i$
$\sum_{n=1}^{\infty} u_n$ $\sum_{n=1}^{\infty} v_n$ $\sum_{n=1}^{\infty} (u_n v_n)$ ______
$\sum_{n=1}^{\infty} u_n$ $\sum_{n=1}^{\infty} v_n$ $\sum_{n=1}^{\infty} (u_n v_n)$ ______
U w v
U w v
$\sum_{n=1}^{\infty} v_n$ lim v (n)
$\sum_{n=1}^{\infty} v_n$ lim v (n)
$\sum_{n=1}^{\infty} u_n$ Nn>NP |u + u + ... + u| < ______
$\sum_{n=1}^{\infty} u_n$ Nn>NP |u + u + ... + u| < ______
$\sum_{n=1}^{\infty} u_n$ lim (u / u) (n)
> 1
$\sum_{n=1}^{\infty} u_n$ lim (u / u) (n)
> 1
$\sum_{n=1}^{\infty} u_n$ lim (u)^(1/n)
(n) = > 1 ______
$\sum_{n=1}^{\infty} u_n$ lim (u)^(1/n)
(n) = > 1 ______
(1) u u (n=1,2,3) (2) lim u (n) = 0
(1) u u (n=1,2,3) (2) lim u (n) = 0
$\sum_{n=1}^{\infty} |u_n|$ $\sum_{n=1}^{\infty} u_n$
$\sum_{n=1}^{\infty} |u_n|$ $\sum_{n=1}^{\infty} u_n$
$\int_a^a f(x) dx$ ______
$\int_a^a f(x) dx$ ______
$\int_a^b f(x) dx$
$\int_a^b f(x) dx$
F(x)[a, b]f(x)0,f(x)dx < 0
F(x)[a, b]f(x)0,f(x)dx < 0
F(x) $\int_{-a}^a f(x) dx$ ______
F(x) $\int_{-a}^a f(x) dx$ ______
A, Bsn ,
A, Bsn ,
Flashcards
基本事件的特点
基本事件的特点
基本事件是不能再分解的事件,任何两个基本事件互斥,任何事件都可以表示成基本事件的和。
古典概型
古典概型
试验的所有可能结果只有有限个,且每个试验结果出现的可能性相等。
古典概型概率计算
古典概型概率计算
如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1/n;如果某个事件A包括的结果有m个,那么事件A的概率P(A) = m/n.
几何概型
几何概型
Signup and view all the flashcards
几何概型的特点
几何概型的特点
Signup and view all the flashcards
几何概型概率计算公式
几何概型概率计算公式
Signup and view all the flashcards
洛必达法则
洛必达法则
Signup and view all the flashcards
洛必达法则适用类型
洛必达法则适用类型
Signup and view all the flashcards
求0/0或∞/∞型极限的方法
求0/0或∞/∞型极限的方法
Signup and view all the flashcards
求0*∞型极限转
求0*∞型极限转
Signup and view all the flashcards
求∞-∞型极限
求∞-∞型极限
Signup and view all the flashcards
两个重要极限
两个重要极限
Signup and view all the flashcards
级数的敛散性定义
级数的敛散性定义
Signup and view all the flashcards
级数收敛
级数收敛
Signup and view all the flashcards
几何级数敛散性
几何级数敛散性
Signup and view all the flashcards
P级数敛散性
P级数敛散性
Signup and view all the flashcards
数项级数的基本性质1
数项级数的基本性质1
Signup and view all the flashcards
数项级数的基本性质2
数项级数的基本性质2
Signup and view all the flashcards
数项级数的基本性质3
数项级数的基本性质3
Signup and view all the flashcards
两边夹定理
两边夹定理
Signup and view all the flashcards
级数收敛的必要条件
级数收敛的必要条件
Signup and view all the flashcards
柯西收敛原理
柯西收敛原理
Signup and view all the flashcards
正项级数收敛判断
正项级数收敛判断
Signup and view all the flashcards
比较法
比较法
Signup and view all the flashcards
比值法
比值法
Signup and view all the flashcards
莱布尼茨定理
莱布尼茨定理
Signup and view all the flashcards
绝对收敛
绝对收敛
Signup and view all the flashcards
条件收敛
条件收敛
Signup and view all the flashcards
奇偶函数积分性质
奇偶函数积分性质
Signup and view all the flashcards
变限积分求导
变限积分求导
Signup and view all the flashcards
行列式的基本性质1
行列式的基本性质1
Signup and view all the flashcards
行列式的基本性质2
行列式的基本性质2
Signup and view all the flashcards
行列式的基本性质3
行列式的基本性质3
Signup and view all the flashcards
行列式的基本性质4
行列式的基本性质4
Signup and view all the flashcards
行列式的基本性质5
行列式的基本性质5
Signup and view all the flashcards
行列式的基本性质6
行列式的基本性质6
Signup and view all the flashcards
矩阵
矩阵
Signup and view all the flashcards
相等矩阵
相等矩阵
Signup and view all the flashcards
n阶方阵
n阶方阵
Signup and view all the flashcards
零矩阵
零矩阵
Signup and view all the flashcards
Study Notes
- This document provides study notes on classical probability models, geometric probability models, limits, series, the properties of definite integrals, determinants, matrices, linear spaces, and differential equations.
Classical vs. Geometric Probability Models
- Basic event characteristics: mutually exclusive; any event (except impossible ones) can be expressed as the sum of basic events.
- Classical probability model: finite, mutually exclusive outcomes.
- If there are n equally likely outcomes, each basic event has a probability of 1/n.
- If event A includes m outcomes, then P(A) = m/n.
- Geometric probability model: Probability proportional to length, area, or volume.
- Geometric probability characteristics: infinite possible outcomes and equally likely outcomes.
- Geometric probability calculation: P(A) = (measure of event A's region) / (measure of the entire sample space).
Limits
- L'Hôpital's Rule: Differentiate numerator and denominator separately until limit type is directly solvable.
- L'Hôpital's Rule applicable types: 0/0 or ∞/∞.
- Techniques for 0 * ∞ or ∞/∞ indeterminate form of limits: transform to eliminate factors, L'Hôpital's Rule, variable substitution, or infinitesimal replacement.
- 0^∞ type limits: similar methods as above, transform to 0/0 or ∞/∞ before applying L'Hôpital's Rule. Complex factors usually become the numerator, especially those containing logarithms.
- ∞-∞ type limits: transform to 0/0 or ∞/∞. Use common denominator if difference of fractions; rationalize if radicals are present.
- Two important limits: lim (x→0) sin(x)/x = 1 and lim (x→∞) (1 + 1/x)^x = e.
Series
- Convergence/divergence definition: If the limit of partial sums exists (S), the series converges.
- If the series converges to S, then S is the sum of the series and rn = S - Sn is the remainder.
- Geometric series: converges if |q| < 1, diverges if |q| ≥ 1.
- P-series: converges if p > 1, diverges if p ≤ 1.
- Basic properties of number series: If Σun converges to S and k is constant, Σkun also converges to kS
- If Σun converges to α and Σvn converges to β, then Σ(un ± vn) converges to α ± β
- Adding, removing, or changing a finite number of terms does not affect convergence
- Squeeze Theorem: If un ≤ vn ≤ wn, and Σun and Σwn converge to α, Σvn also converges to α.
- If Σun and Σwn converge; Σvn may or may not converge.
- Necessary condition for convergence: If Σun converges, then lim (n→∞) un = 0.
- Cauchy convergence criterion: Σun converges iff for any ε > 0, there's N such that if n > N implies |un+1 + un+2 + ... + un+p| < ε for all positive integers p.
- Positive term series: Given series Σ un, if un ≥ 0 for all n, then Σun is a positive term series
- A monotonic and bounded sequence of partial sums is a sufficient and necessary condition.
- Comparison test: Given positive term series Σun and Σvn with un ≤ vn.
- If Σvn converges, so does Σun; if Σun diverges, so does Σvn.
- Ratio test: Let ρ = lim (n→∞) un+1/un. If ρ < 1, the series converges; if ρ > 1 or the limit tends to infinity, it diverges; if ρ = 1, the test is inconclusive.
- Root test: converges if lim (n→∞) (un)^(1/n) < 1 and diverges if limit > 1; inconclusive if limit is 1.
- Alternating series test (Leibniz's theorem): For alternating series Σ(-1)^n un where un ≥ un+1 and lim (n→∞) un = 0 then the series converges.
- Also holds true that |s| ≤ u₁ , and the absolute value of the remainder | rn |≤ U**n+1.
- Absolute convergence: If Σ|un| converges, Σun also converges.
- If Σ|un| converges, it is called absolutely convergent.
- If Σ|un| diverges, but Σun converges, it is called conditionally convergent.
Definite Integrals - Properties
- ∫[a to a] f(x) dx = 0.
- ∫[a to b] dx = b - a.
- ∫[a to b] f(x) dx = -∫[b to a] f(x) dx.
- ∫[a to b] kf(x) dx = k∫[a to b] f(x) dx.
- ∫[a to b] f(x) dx = ∫[a to c] f(x) dx + ∫[c to b] f(x) dx.
- ∫[a to b] [f(x) + g(x)] dx = ∫[a to b] f(x) dx + ∫[a to b] g(x) dx.
- If f(x) ≥ 0 on [a, b], then ∫[a to b] f(x) dx ≥ 0.
- If f(x) ≤ g(x) on [a, b], then ∫[a to b] f(x) dx ≤ ∫[a to b] g(x) dx.
- |∫[a to b] f(x) dx| ≤ ∫[a to b] |f(x)| dx.
- If m ≤ f(x) ≤ M for x in [a, b], then m(b - a) ≤ ∫[a to b] f(x) dx ≤ M(b - a).
- Mean value theorem for integrals: There exists ξ in [a, b] such that ∫[a to b] f(x) dx = f(ξ)(b - a). f(x) must be continuous in [a,b]
- If f(x) is odd, then ∫[-a to a] f(x) dx = 0; if f(x) is even, then ∫[-a to a] f(x) dx = 2∫[0 to a] f(x) dx.
Indefinite Integrals
- F'(x) = f(b(x))b'(x) – f(a(x))a'(x), where F(x) is integral[a(x), b(x)] of f(t)dt.
Determinants
- Determinant equals its transpose.
- Interchanging two rows/columns changes the sign.
- If two rows/columns are identical, the determinant is zero.
- A common factor in a row/column can be factored out.
- If a row/column is all zeros, the determinant is zero.
- If two rows/columns are proportional, determent value is zero
Matrices
- Matrix: m x n rectangular array of numbers.
- Equal matrices: same dimensions and corresponding elements are equal.
- n-order square matrix if dimensions are nxn
- Zero matrix: all elements are zero.
- Symmetric matrix: aij = aji.
- Anti-symmetric matrix: aij = -aji (diagonal elements are zero).
- Triangular matrix: Upper triangular has zeros below diagonal; lower triangular has zeros above.
- Diagonal matrix: non-diagonal elements are zero.
Linear spaces
- Defined by addition and scalar multiplication operations satisfying specific rules.
- Includes vector addition, scalar multiplication, zero element, negative element, and associativity/commutativity.
- Linear Combination: Linear combinations of vectors α₁, α₂, ..., αr (r ≥ 1) are created when there are constants k₁, …,k*, such that α = k₁α₁ + k₂α₂ + … + k α
- Called the representation of the individual vector, a, by the combination of vector pairs
- Linear Dependence: Linear dependence occurs within linear space v of within vectors α₁, α₂, ..., αr (r 1) when there are constants k₁, …,k* (not all 0) such that k₁α₁ + k₂α₂ + … + k α=0.
- This holds true when k = k₂=....=0
- Dimension: n-demensional if the maximum number of linear independent vectors is n
- Zero vector is not linearly independent
- Linear Subspace: a non empty subset that holds true for two conditions
- Given any vector a in space, w, the scalar product k* a* is present where K is a linear subspace w
- Given any vector space, a, and b, the vector sum a + b is a linear subspace w
- Maximal set of linearly independent vectors is equivalent to itself
- A row that is already equal with the maximal linearily 开发者_如何学Python
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.