ความดันอากาศและน้ำ
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

เมื่อแหล่งกำเนิดเสียงที่มีความถี่ 500 Hz เคลื่อนที่เข้าหาผู้สังเกตด้วยความเร็ว 34 m/s ในขณะที่ความเร็วเสียงในอากาศคือ 340 m/s ผู้สังเกตจะได้ยินเสียงที่มีความถี่เท่าใด?

  • 550 Hz
  • 559 Hz
  • 450 Hz
  • 567 Hz (correct)

หากความดันอากาศที่ระดับน้ำทะเลคือ 101325 Pa และความหนาแน่นของอากาศคือ 1.225 kg/m³ จงคำนวณหาความเร็วเสียงในอากาศที่อุณหภูมินั้นโดยประมาณ (กำหนดให้ค่าคงที่ adiabatic index γ = 1.4)

  • 340 m/s (correct)
  • 1422 m/s
  • 287 m/s
  • 5144 m/s

ลมทะเลเกิดขึ้นในเวลากลางวันเนื่องจากเหตุผลใด?

  • ความชื้นในอากาศเหนือพื้นดินสูงกว่าความชื้นในอากาศเหนือพื้นน้ำ
  • อุณหภูมิของพื้นน้ำสูงกว่าอุณหภูมิของพื้นดิน ทำให้อากาศเหนือพื้นน้ำลอยตัวขึ้น
  • ความกดอากาศเหนือพื้นดินสูงกว่าความกดอากาศเหนือพื้นน้ำ
  • อุณหภูมิของพื้นดินสูงกว่าอุณหภูมิของพื้นน้ำ ทำให้อากาศเหนือพื้นดินลอยตัวขึ้น (correct)

ถ้าคุณสังเกตเห็นว่าใบไม้บนต้นไม้สั่นไหว แต่คุณไม่ได้ยินเสียงอะไรเลย ปรากฏการณ์นี้อาจบ่งบอกถึงอะไร?

<p>ความถี่ของเสียงต่ำเกินกว่าที่หูมนุษย์จะได้ยิน (B)</p> Signup and view all the answers

เรือดำน้ำลำหนึ่งดำลงไปในทะเลลึก 50 เมตร ถ้าความหนาแน่นของน้ำทะเลคือ 1025 kg/m³ และความดันบรรยากาศที่ผิวน้ำคือ 101325 Pa ความดันรวมที่กระทำต่อตัวเรือดำน้ำเป็นเท่าใด?

<p>602575 Pa (A)</p> Signup and view all the answers

Flashcards

ความดันอากาศ (Air Pressure) คืออะไร

แรงที่อากาศกระทำต่อพื้นผิว

ความดันน้ำ (Water Pressure) คืออะไร

แรงที่น้ำกระทำต่อวัตถุที่จมอยู่ในน้ำ หรือต่อพื้นผิวที่สัมผัสน้ำ

เสียง (Sound) คืออะไร

การสั่นสะเทือนที่เดินทางผ่านตัวกลาง เช่น อากาศ น้ำ หรือของแข็ง

แหล่งกำเนิดเสียง (Sound Source) คืออะไร

สิ่งที่ทำให้เกิดเสียง เช่น ลำโพง หรือการเคาะโต๊ะ

Signup and view all the flashcards

อะไรทำให้เกิดลม (Generation of Wind)

ความแตกต่างของอุณหภูมิและความกดอากาศ

Signup and view all the flashcards

Study Notes

  • Air pressure is the force exerted by the weight of air on a surface.
  • It is typically measured in units of pascals (Pa) or millibars (mb).
  • Air pressure decreases with increasing altitude.

Factors Affecting Air Pressure

  • Temperature: Warm air is less dense and creates lower pressure; cold air is denser and creates higher pressure.
  • Altitude: Higher altitudes have less air above, resulting in lower pressure.
  • Humidity: Moist air is lighter than dry air at the same temperature and pressure, thus humidity can affect air pressure.

Water Pressure

  • Water pressure is the force exerted by water per unit area.
  • It increases with depth due to the weight of the water above.
  • Water pressure acts equally in all directions at a given depth.
  • Formula: Pressure = density × gravity × depth (P = ρgh).

Sound

  • Sound is a form of energy that travels as waves through a medium (such as air, water, or solids).
  • It is produced by vibrating objects.
  • Human hearing typically ranges from 20 Hz to 20,000 Hz.
  • Sound requires a medium to travel; it cannot propagate through a vacuum.

Properties of Sound

  • Frequency: The number of oscillations per second, measured in hertz (Hz), determines the pitch of a sound.
  • Amplitude: The intensity or power of a sound wave, determines the loudness or volume of a sound.
  • Wavelength: The distance between two consecutive peaks or troughs of a sound wave.
  • Speed: The speed at which sound travels depends on the medium's properties; it is faster in solids and liquids than in gases.

Sound Source

  • A sound source is any object that vibrates and produces sound waves.
  • Examples include musical instruments, human vocal cords, loudspeakers, and machinery.
  • The characteristics of the sound produced depend on the properties of the source and how it vibrates.

Generation of Wind

  • Wind is generated by differences in air pressure.
  • Air moves from areas of high pressure to areas of low pressure.
  • The greater the pressure difference, the stronger the wind.

Factors Influencing Wind Generation

  • Solar heating: Uneven heating of the Earth's surface creates temperature differences, leading to pressure gradients.
  • Coriolis effect: The Earth's rotation deflects moving air (winds) to the right in the Northern Hemisphere and to the left in the Southern Hemisphere.

Land Breeze, Sea Breeze

  • Land breeze and sea breeze are local wind patterns caused by the differential heating of land and water.
  • Sea Breeze (Daytime): Land heats up faster than water, creating a low-pressure zone over land and a high-pressure zone over the sea. This causes wind to blow from the sea to the land.
  • Land Breeze (Nighttime): Land cools down faster than water, creating a high-pressure zone over land and a low-pressure zone over the sea. This causes wind to blow from the land to the sea.

Types of Wind

  • Planetary Winds: These winds blow steadily in a particular direction over long distances, like trade winds, westerlies, and polar easterlies.
  • Trade Winds: These blow from the subtropical high-pressure belts towards the equatorial low-pressure belt.
  • Westerlies: These blow from the subtropical high-pressure belts towards the subpolar low-pressure belts.
  • Polar Easterlies: These blow from the polar high-pressure areas towards the subpolar low-pressure areas.
  • Local Winds: These winds blow over small areas due to local temperature and pressure differences.
  • Monsoon Winds: These are seasonal winds which reverse their direction with the change of seasons.

Sound Movement

  • Sound waves propagate through a medium by compression and rarefaction.
  • Compression: Areas where air particles are close together.
  • Rarefaction: Areas where air particles are spread apart.
  • Reflection: Sound waves can bounce off surfaces, creating echoes.
  • Refraction: Sound waves can bend when they pass through a medium with varying density or temperature.
  • Diffraction: Sound waves can bend around obstacles or spread out after passing through narrow openings.

Complex Problem: Predicting Sound Travel in Varying Atmospheric Conditions

  • Problem:* A concert is being held outdoors in an area where the air temperature varies significantly with altitude. On the ground, the temperature is 25°C, but it decreases linearly with altitude, reaching 15°C at a height of 100 meters. There is also a gentle breeze blowing from the stage towards the audience at 2 m/s. Determine how these atmospheric conditions will affect the sound produced by the speakers, specifically focusing on how far from the stage a listener must be before the sound appears to be significantly altered due to atmospheric effects.

Solving for Air Pressure

  • Initial Conditions: We are given air temperature variations with altitude, from 25°C at ground level to 15°C at 100 meters.
  • Temperature Gradient: The temperature decreases linearly with altitude.
  • Wind Effect: A 2 m/s breeze blowing from the stage towards the audience also influences sound propagation.

Determining the Speed of Sound at Ground Level

  • Formula: The speed of sound ( v ) in air is temperature-dependent and can be approximated using:

    [ v = 331.4 + 0.6 \cdot T ]

    where ( T ) is the temperature in Celsius.

  • Calculation: At ground level (( T = 25^\circ \text{C} )):

    [v = 331.4 + 0.6 \cdot 25 = 346.4 \text{ m/s}]

Sound Refraction Due to Temperature Gradient

  • Description: Since the temperature decreases with altitude, the speed of sound also decreases with height. This variation causes sound waves emitted at an angle to refract, or bend, away from the ground.
  • Refraction Explanation: Sound travels slower in colder air, which exists at higher altitudes in this scenario. Thus, the upper part of the sound wave slows down relative to the lower part, causing the wave to bend upwards.

Impact of Wind

  • Effect of Wind: The wind blowing towards the audience at 2 m/s increases the speed of sound in the direction of the wind and decreases it when traveling against the wind.

  • Effective Speed: The effective speed of sound ( v_{\text{eff}} ) in the direction of the breeze is:

    [v_{\text{eff}} = v + v_{\text{wind}}]

    [v_{\text{eff}} = 346.4 + 2 = 348.4 \text{ m/s}]

Calculating the Bending Radius

  • Temperature Gradient Calculation: The temperature gradient ( \frac{dT}{dz} ) is:

    [\frac{dT}{dz} = \frac{15 - 25}{100} = -0.1 \text{ °C/m}]

  • Sound Speed Gradient: The corresponding gradient in the speed of sound ( \frac{dv}{dz} ) is:

    [\frac{dv}{dz} = 0.6 \cdot \frac{dT}{dz} = 0.6 \cdot (-0.1) = -0.06 \text{ m/s/m}]

  • Radius of Curvature: The radius ( R ) of the sound wave's path due to refraction can be estimated using:

    [R = -\frac{v}{\frac{dv}{dz}}]

    [R = -\frac{346.4}{-0.06} \approx 5773 \text{ m}]

Determining the Distance of Noticeable Sound Alteration

  • Considerations: The listener will notice the sound alteration when the sound waves significantly deviate from a straight path due to temperature gradient and wind conditions.
  • Estimation: The listener will notice a distortion in the sound when the cumulative bending effect becomes noticeable. This calculation highly depends on the sensitivity to sound changes.
  • Summary: A listener positioned approximately 300 to 500 meters away from the stage may start to notice significant changes in sound quality due to the combined effects of temperature gradient and wind.

Visual Illustrations

  • Illustration 1: Depicts the temperature gradient and its effect on sound wave bending over the concert area. Shows sound wave "bending" up due to temperature differences.
  • Illustration 2: Shows wind flow over the concert area. Includes sound wave speed increasing slightly downwind. Describes the combined effects of refraction and wind on sound waves at various distances from the stage.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

ความดันอากาศคือแรงที่กระทำโดยน้ำหนักของอากาศบนพื้นผิว ลดลงตามระดับความสูงที่เพิ่มขึ้น ความดันน้ำคือแรงที่กระทำโดยน้ำต่อหน่วยพื้นที่ เพิ่มขึ้นตามความลึกเนื่องจากน้ำหนักของน้ำที่อยู่ด้านบน

More Like This

Use Quizgecko on...
Browser
Browser