M1109 Analysis Course Slides PDF

Document Details

MerryTropicalIsland

Uploaded by MerryTropicalIsland

Lebanese University

2023

Ibrahim ZALZALI

Tags

analysis mathematics Lebanese University University Course

Summary

These are course slides from a mathematics analysis course at the Lebanese University. The materials cover topics in real numbers, inequalities, and absolute value.

Full Transcript

Université Libanaise Faculté des sciences Section I Analyse M1109 Cours-Slides Année 2023-2024 Ibrahim ZALZALI ...

Université Libanaise Faculté des sciences Section I Analyse M1109 Cours-Slides Année 2023-2024 Ibrahim ZALZALI !'EF  G!HIJKHLNMO) PL 5DQ @;RK@ 1A+6S @T/@UR= 1A+;& @UR & V @ S R< = W V @URXW 1AY < 0 T Q Y < @ & @ S , W 0 =D< ,6Z/Z @ S V @ 0 < VU[\,6S 0 W V$]8Y/0 @^RKWNT V^_ < 0 @ Z;, &aR` B baced7fDcXg h/i^h6jAk8lm n g oDh;pPqPm g i^h a≤b ⇔a−b ≤   !"#$ C( @UW 9 ( aa ≤≤ bb @UW cb ∈≤ Rc ⇒,/S = &aR +a c≤≤c rb + c r st& @ Y ?;@ ` a − c = (a − b) + (b − c) = (a − b) + (b − c) ≤ B ( %'&)( * + &-,/./0 1 243'56273'58* v ( a ≤ b @UW c ≤ d ,/S = & R a + c ≤ b + d ( u u | {z } | {z } ≤ ≤ st& @ Y ?;@ ` 9;:#= ?;@ 1A+ & @A9/B/9DC a + c − (b + d) = (a − b) + (c − d) = (a − b) + (c − d) ≤ B( w ( a ≤ b @UWB ≤ cC ⇒ acC ≤ bc ( | {z } | {z } u u ≤ ≤ : ( B ¦ x ¥ž§X¨'¦ ¥£ ¤^¥>¦8© ª>§ž« ¨K« ¬F¢­ª>¨Œ¤ |x| Ÿ;¤K®7¢>«P©>“­£š¯ Ù8Ú\Û6ÜeÝ/Þ Ý Û C ( ß = 0 W α > B (Éà =DW & @ &t]8Y @ ` èUö éŒêŒí-êeï-ëŒì ì ëží-ì ì/ô îží éeïô ï-ì ð ï-ô ï ôUî^ñeé-ò^ï ó ï-ô ò ïŒé õ ù R 0 x≥B ; á â>ã |x| ≤ α ⇔ −α ≤ x ≤ α ä ñ)÷-ø òXø ø ÷ áeå>ã α ≤ |x| ⇔ x ≤ −α æ/ç x ≥ α ä úDí ð ö ï-ô ø ïŒí ò ö ñ û ñ ö ü- ý û ï  ý) þ  í þ)ö ñŒû ï ÿ       y ax + bx + c ( x 0 x 00 x0 < x0 |x| = x ° = R 0 x≤B. √ x −x 9 ( à =Dã  æ   "!/#ç %$ α ≤ |x| ⇔ x ≤ −α æ6ç x ≥ α≤ä x ≤ α ä w ( |x|xy−| =y ||x|= |y× |y−|x|( áeå>ã ≥ α ⇔ x & ≥ α& ⇔ x & − α& ≥ ' ⇔ x ≤ −α æ6ç x ≥ α ä : ( |x|° = x ° ( 9 (à =D=D< * V!s (n) (7ßP04`  d7m Ä\iUg d7o C ( s @URKWÑ? & ,;0 /P@UW C ($ß = 0 W S(n) = C + 9 + v + · · · + n ( 9 ( Z = (nY/u& )WX= Y W n ∈ N , R 04S Q =DYã LPâ M O M s C @URKWÑ? & ,/0 / ∗ C ( á â>ã S( P )ç =# PNS(Z S(P ),Q )S(=Q )P ³ ´µmHr |m n ≥ j#} 89  ;:A@& B> CBYFZDFE6[ \ ]=G5H \IJ^`H _=KLGNacb M5d)efOQ_?P RQg h5PejH iWST^ \H h-I OTe-k-O)iFIVb _JU?l&^9K _jIWeR)IJm-H KLn h)GLl=X o pf_jn lBq-dfh5\j^&_jeFaLo=[ Z=g h5eji ^W\ h5e-r s \ f (x) ^&_jejapf_jn l ` [ h)n l q-df_ x ^`_Fejapj_jn l a k-h-etuifn \ ^9Z)[ h)n l vw D x`R)IJH KLG)yyuz5xP O)yP H STH I O)y lim f (x) = `. x→a     ! "  {Ž |5h }Fej~JiW € )~f‚ƒ&| )~ f „u †9 ƒ}j~u‡ | †| ƒ+ˆc~f|  ` f~ a ‰)„j‡ FŠ ‹ ` W‹+ƒ9}F~f| Œ)}uF [ \ ]=\ ^&__Fn’ejZ)m euZF^BdFif[ Z“f_?[ \ ]=_W^\ ^`aF_=_Vac[ b\ d)]=e \ _B^&_g h-’Veja5iW^n h-\ h-\ ^&e=__j_jeTe d)aerTej”9h-dj]=q5 dfn _j_ [5aiJZf le • \ k-h-e‘jZjn [ _aF_ lW\)_J^9l_jd)[ _j]B_Feu^–lW\ lim f (x) = lim f (x) = ` r #$&% ' ()$+*-,-. /10324506247' lim f (x) = ` x→a x→a+ x→a−  { | ju}J—B€  ~u‚ƒ|  ~u‹ f  ƒ g „u †9 ƒ ƒ`f~Wƒ–fW‹‡ | †| ƒ+W‹ `  ƒ m f~ a ‰)„j‡ FŠ ‹ lim (f (x) + g(x)) = ` + m lim (f (x)g(x)) = `m; f (x ) ` ˜+™ š m 6= ›§ ¨ œF©Vª=ž`Ÿ-«j&¡¬=­&œ)®5¯u­9¢ £-°¤-±¥)® ¦ ² œ ³B¡«J´?¢ £)µ ¬j¥)¶)œF·W ­&«j² ³=µ ¬j·J«J´=¸ ¾6¿ ÀJÁ&ÂTÃuÁÄ ÃfÅ–Æ Ç=È`¿Jɖ¿JÁ&Ç=Ê ÃJÉ Å3ÇÂWÇ=Ë&Ç lim = , x→a x→a x →a g (x ) m ÄÍÌuÀÍ ÈLÇ ÂWÎÇÔË`ÏÇWÑ ÅÏ ÀTÑ Ä ÁÇcÇÕ ÕFÐ ÇÖf¿&ÃfÄ¿WÉ)Í Ë&ÀÀJÈÏ ËWÂf¿WÑ Ï É ÇWÇ=ÉFË`ÒfÇ`¿JÈ3Ó Ñ ÏÏÑ Å ÁJÑÓ ÄÌÇ`È`À Î I ∞ − ∞¹ I » I º × ∞¹ »¼ ÀÑ ÏjÈ Ä+Ê ÀJ¿Ë`¿&Ç&ÄÔÈ`ÀJÎjÍJÒjÍW¿&Ï ÇÑ ÒjÏ¿&Ó ÃfÇWÉÁ ÂfÐWÓÀ ÀJ¿`Ð Ä`ÃuÉ Ñ Ç&ÉcȖÍWÄ Ï ¿Ç`ËWÈ7×WÄ ÁWÀ ÑÉ ÒjÂF¿&Ø Ç`ÈÃf¿ I ∞ ∞½ 89  ÙÚÜÛ6ÝÞ ß à3áãâ7äæåÔâèçcÞ9áé6ê3ß êÔë ä)Þ9ìèâLíîå âäÜï â ì3åÔê3ßuáâ7ä 89  cb   ! " V † Œ‡ ‹ Ž ™“$"‘ ž ‡ ŽŒ„^ Ÿn$‘ ‘ „ ˆ ›— ‹ ŽŒ „n’“„ f (t) = ln(t) [x, x + ] a Á š É É O š 1 ž n Ÿ è š É S œ p Á  œ ¾  š n ¾ a Á £ š ( œ  Ÿ ( À U ½ Æ ¾nÁ n5 ˆ < ln(x + ) − ln x <. ¿8½(! š”Ã8À(½;¾$Äœ¾8Á (c, f (c)) š”ÃaÁFÀ œn&œ(É É É š SÉ œ O a c c ∈ ]a, b[ d 3 ˆ%‰ ­   ‹ Ž^†Œ‡ ‹ Ž +x „™Œ x É Æ 1¾$šÄ½;¾¾nÅ8š L Ë 5 € c b x I f (t) = ln(t) † ‹ ŽTŒ‡ Ž%“„O™“$ ˆ [x, + x] ® ˜^•^ ‡ Ÿn$¯$‘ „O™“$ ˆ „Œ ‰ I ]x, + x[ f 0 (t) = ° ‹ Ž^†V‘ „l±²L³6™™“% „u‘ ž „ƒ$‡ ™Œ„^Žn†„V˜ž “$Ž6 •„nt‘ ˆ Œ„n‘CEDBFrGIHJLKWA\NIArPsQLSSrHGVU PPALKMALXC%PtY4XIU P\[^]`_saub   >=  @?BA>CEDF"GIHJLKMAMNOA"PRQSSBHTGVU PPAIKWALXC. 4 56$3 1 1 7 1 *8! '#7*9::9;'#7#8,   `  X X  $8a f (x) g (x) = arctan x < C^ x= ,  =&>@? A BC >@DFE +b d π C ^ = arctan  − arctan c =. −b " "! #$&%'#)(' *! #$"( (,+-#! ! '#  e '302L*1 2$31  *! %G'#L%]#L(N  P % (i 'j R  %GH(+&#! I'3 JK('#L2   Cfhg x +∞, f x 6= Df =] − ∞, [∪] + ∞[.    l.6/0*1 231  0  +x πd k π dπ f (x) Cf = lim arctan  − arctan x = − − = −.  x→+∞ −x. MN*7(O! P8 0 % 2L*1 2$31 "$#QI'%,*#L +x R m #)#7(8(3!  f (x) u=  −x  π d I'3  T     arctan x + x< ; T +x 0 T S  +x )T U arctan  0 =   T  = ( T −x()T U −x u −x = l f 0 (x) =  +( +x ) U = .  dπ I'3  + uS + T +x S + xS −x  −x ( −x )U arctan x − x>. >?@  BAC DFLGPHŒI0K FLGåI0N(K OFGFLQæRXI0N K STVXWçK!GPZ[VN9WhVXW >?@  BAC DFGHJI0K FLGMI0N K OFLGPFLQ,R@I0N(K SUTPVXWYK!G[Z[VN\W1VXW n$opLq rs rp «L¬“­8¬$® p8{q@¯Lp“rp y y p“r wx° y ¬ x,y pšp ° yªw±,y p x {ph²8¬8q@pGo8p8³“²$® ph² w {$q | tu vhwx,y q p8q@z{p"| √ t ~  € f (´ ) = arctan ´ + ~ arctan = t π uNµ ¬8q@r wx8°:¶ z{p x,y } x=´ ∀x ∈ R } arctan x + ~ arctan π ~ +x −x = ~ ‚ € ƒ 6 „ L†‡$ˆ ‰ Š]‹‡8Š"Œ arctan(√ ‚ −  ) = πŽ € pt π · ∀x ∈ R, arctan x + ~ arctan( + x − x) = ?¸  € ƒ „6L†‡$ˆ ‰ Šh ‘“’8‘$ Š8‡$‰-$Š ~ tan Ž&€ π u n x ¯ ¶ ¯{s q p]z{p"| √ t Ž € ”•  ‡,–Gˆ • ) „ Œ ~ arctan( ~ − ) = 𠀍 h— • „,–G‰ Š8‰@‹‡8Š"Œ ∀x ∈ R ˜ arctan x + ‚ arctan √  + x ™ − x = π‚ €   ‚ € ” ˆ $‘$„ž • „]› ‘$ˆ – • „ • –ˆ Š8„,– √‚ π¹ € ˜ (?) ˜ x = $˜ arctan( − )= ”• • • ‚  €  ˆ –š ‘“• › „8œG–• ˆ „ x 7→ f (x) = arctan x + • arctan(  + x ™ − x) € √ ŠG– –:Šš› „8œG–ˆ „ f Š:ž –Ÿ$†8‰ ˆ ’L‘L Š]ž‡$‰ R Š– „h‘)Œ  €6ƒ „h$†,‡$ˆ ‰ Š]‹‡Š"Œ √‚ Ž € − )= π arctan( √¦ + x§ √¤ x √¦ x− √ +x ¥ + x§  € º-Š6 ‘ ‰ Š8 ‘–Gˆ • „ π¹ • „hL†‡$ˆ –ª‹‡Š f 0 (x) = ¡+ x ¢ + £ − ¡ = ¡ + √‚ π¹ √‚ € √ − )= ˜ − ¡ + ( ¡ + x ¢ − x) ¢ ¡ + x¢ ¡ + x¢ − x ¡ + x¢ arctan( tan = ¡ √ = ¡ +√ ¡ + x¢ × x− + x¢ ¡ + x¢ = ¨. + x¢ − x ¡ ¡ ¡ © ‘“› • „8œG–ˆ • „ ‘"‡$„8Š]L†L‰ ˆ ’†,Š6„$‡  Š • „8œšŠL  ŠHŠ,ž –ªœ • „8ž –;‘L„– ŠHžG‡‰ € f ˜ R \]$^_ `]a  cbedgfUa  `]a hz ƒ ixi;„j k „ r q i;j l†j m_nr o j kr p;qsr tuo†jv Š;rDi k_q {|nruoxqˆkwDy ruz i;„ j {x„ r {|r v r n kz j v j k w!}~n iuk w€|N‚ o t y sn tˆ‡ o ‰ r n wŒ‹ f :R→R f tŒy ‹ r† k_q n {|i;z  nuŽ;v r o r o r ‡ „ w l n x=     ! " ##$&%'&(!)+*,.-.%/- )+*'01324 f (x) = Pn (x) + x n ε(x)  Pn (x)  ‰;l ≤n {|i;z   nunŽ;v o|wDj t y z rur z i;o {xr {|‹ r r~v k k~r rn k‘ i z nsj v ‹ k†j kj i w_n$o t ƒ q q n y ri;‘ j i†jnsns‹ tˆk†‡ j i r n o rr n ‹ r&q n {|i;{|ji;n j k n l kr† k_q n r t {x{s„ iŒ’xj v_t k†j i n  lim ε(x) = 5768 9;: @ x→ “ ’sr v {xz r A$BDCE FB.G+H+I JLKNM$OPK7M$OQE ” i n k†„ ru„•pq;ƒ t q y i;j †j nstˆ‡ r o r ‰ Š+z t ‘ i ns‹ k†j i n – — ˜ ™ x= tso–|v l rDkz ƒ i|q „ n o „ r €–|l‚ f (x) = − x +x −x R+SUT;VWYX JZFB XZR+[+R+[ —;l z ƒ i|„ o „ r!š l \]$^_ `]a  cb›d&fUa  `]a \]$^_ `]a  cbedgfUa  `]a –|¶|l· ¸œ¹|ž|º »|Ÿ†¼ˆ~¡½_¢Œ¡P¾£|¿;¤ˆÀˆ¢ ½†Á ˆÁQü;Ä ¿;¥ À Å|¦Âu¼ˆ½ƌÇu§Á È Á  ¨©Œªx«N¢.N¤¶ sŸ&¬®­_¯!¥©u¤°Œžs± ².± ŸŒ¿;©†¼ ³u¢¹ »!ªu¢ º ¿|Á ¾! ´|µ “ ’sr {xz r f (x) = − x + x − x »ˆÑuÂŒÇ É Ê Ë_Ì Ì x= hi;j k v q n r‘ i ns‹ k†j i n n ƒ r† k_{ t oxw Pn j r!r n ‰ p;qxj yuw „ j r Ð Â Ì ½_¼xÀ$· Å|¿;¹ Ò|ÀuÓ;¾_Â&Ô|Â!Ôx†Õ;Á Æ ¶|· š — ˜ ˜ r‹  ‰ f (x) = − x +x −x Í Î Ï•Ð Î Î Ð Î Œ t y f *. x=. ” i k†„ ru„Qpqur r† k{ { r hi;j k.i {s„ i;z i r r k Ö × —;š–|lll 7” w i k~nn ruk†„ „v ru„Qj n pruqu„®r z ƒ w pr†q t k k†j oxi lw n!„ ljo‹yurgt nz tz r_k r t|n nu‡ ‰;r l n k~r ‰;l1 i n|‚ n nz rut&„ ‹ iq|‰„ nu‡rl v n o l r t q {si;j n k I P (x) ≤ f (x) = − x + x + x ε(x), lim ε(x) = Ø ÀÂ~Ù1ÂD½Œ¶ Ú¿;ÀƌÇuÁ È ½ŒÚ ( )= ( )+ ε( ) x→ I lim ε(x) = »ˆÑsÂ†Ç Ð É ¶ É Ê ÂD½ Ë ¶ f x= g É Û × ·Û Ð ot qƒ t y i;‹ j †jj.ns~rtu‡ r o r ‰ rDk{s‰;„ w†l ‹ j ~ru„®z t {sis†j k†j i n „ rˆz t k†j y r o r { t „®„ t {|{|i|„ k ‚ x→ g "/ x= g 0( ) (D) / (C ) g Ö f (x) = − x + (x − x ) = − x + x(x − x ) = P (x) + xε(x) / x= (C ) (D) P (x) = − x ε(x) = x − x −−−→ Éõ;·ö ÷Üø|Ý|ù ú|ކûˆß~àü_áŒàPýâ|þ;ãˆÿˆá ü û þ;ä ÿ åuûˆü æ çèŒéxê ãsÞ&õ ë®ì_íî è ãïŒÝsð ñ.ð Þþ;è†û ò á ø ú!é á ù þ ý ó|ô. á N ß ” i k†„ ru„Qpqur r† k{ { r hi;j k.i {s„ i;z i r r k x→ x= –|–|ll m_ng n t  š l — l ‹ n ˜ ‰;˜ l š n nu‡ v n l 0213 456 1798 f (x) = − x + x − x x= ú f x= g             : ;< <  =*> ? @ ACBED F= ?C? = x = G ü_ûxÿ |þ;ø |ÿ ;ý ö f (x) =  − x + x − x ; < f  ši ru„ †j†j ‰‰  lim f (x) = lim − x + x + x ε(x) =. f (x) = a+bx+cx H +x H ε(x) ” i i ns‹ k†„ ru„Qr†pk_qur { l { l r†‹ rk n „ j ‰ z r_{ t r „ x→ x→ I"J KEL ö @ xlim   f (x) = a    ! "# →M   I P (x) ≤$  ÿ Dü þ;ÿ õ ü ( ) =  ( ) +  ε( ) f (x) x 6= —;l r†n k „ j z r_r oxw yut rDk n ‰;l1 “ n|n r 1r~kŒŠ ‰ l f x= g (x) = I lim ε(x) = & x= ú ' (*)+ , (  , õ Dü   f (x) =  − x + x + (−x ) =  − x + x + x (−x ) = P (x) + x ε(x) x →% õ  ö   —;l oxw yut n ‰ ‰ —;l n g "/ x= ON g 0( )  -    g "/ x= g 0( ) = − P (x) =  − x + x ε(x) = −x −−−→ & g (x ) − g ( P ) f (x ) − R VW W x →% lim = lim x→ x x →Q x VW f XOY Z [ \]*^ _X Z2Z X x = ` R − S x + x T + x T ε(x ) − R f (x) = a+bx+cx a +x a ε(x) = lim b"c d e 0 x →Q x [ g (` ) = b  = lim − U + x + xε(x) = −U. x →Q \]$^_ `]a  cb›d&fUa  `]a \]$^_ `]a  cbedgfUa  `]a š l 7ƒ w k~ru„ v j.j~rn ru„®z ƒ w pq t rDk†k_j i {sn&„ o rgj.ruz t „7kz t|nu{|‡ isr †jn k†k~j ri „ ruz ‚ k†j z tgr ‹ i;r qx„ r { „Qo „ r {x{sixt „ kq${|i;j n k ” i k†„ ru„Qpqur r† k{ { r hi;j k.i {s„ i;z i r r k š l ot€ qƒ tw py i;q ‹ jt Djk†jnsi tˆn&‡ ro rgo r z t‰ k t|nu‡ ‰;r wŒl n ‹ k~r t ‚ z tg‹ in q|„ r t y oo r r† k t t ‚ –|–|ll  ƒ t n {|„ †_z r oYl z l  l l ‹ n ‰ ‰;l n †j nu‡ v n l 0213 456 1798 (D) / (C ) g "/ x= (C ) (D) z f x= g x= ” i i ns‹ k†Š„ ru„QrDpquk!r { l { r†l ‹ k r n „ j ‰ z r_{ rt „ i ‰ ru„ †j ‰‰ lim f (x) = lim f (x ) = a | }~ E€ ƒ‚ „ }E€ ‡†„ˆ€‰‚ ‰†"Š ‚ š — (D) / (C ) g : x→ x→ { ;< ( f (x) = a + bx + cx H + x H ε(x) f (x) x 6= ; I"J KEL J ? f*g h A =iBE? J hCA K h = L jE? = A ? (D) h g+k = A f x= g (x) = is†j k†j i n „ ruz t k†j y r }  q y ij †j nutu‡ r o r ‰ Ši nt y = − x. BO> h l @ m @ @ ? x = G+n him g El ? (C ) B*? g ? @ Ao x=. y = a + bx g 0( ) š l 7ƒ w k~ru„ v j.j~rn ru„®z ƒ w pq t rDk†kj i {sn!„ o rgj ~ruz t „ Šk.rt|nuz i‡ r n z k~r†r z ruq|‚ „ z t&‹r iq|„ z r {|is†j k†j io r „ ruz t qk†j {sr i;j n r k p prq g "/ x= z r† k t q o r†.†qu o r  t ˜ q y i;‰ j †j nstu‡ r o r ‰;l : s x= : g 0( ) = − g 0 ( ‹ ) = b Œ Ž E ‘ƒ’ ‰E“- ”i•"– x –—˜‡’ ƒ–"• ’ o t ‹ ‰ w†‹ n yst o t n t y o š l € ƒ w pq{ tt r†k†„®j i k„ tng{xo {srgix„ z k t ‚ k txnu‡ r n t k~q r y i;j †j ns‚ tˆ‡z tgr ‹ o i;r qx„ r ‰;l o r t q${sij n k o ƒ t ‹ j.~r f (x) − y ' x ≥. (D) / (C ) g / x= a “ ’sr {xz r t+17 u3 4-vO6 17w8 x h;ij k v q n r‘ i ns‹ k†j i n n ƒ r† k_{ t oxw Pn j r!r n ‰ pqxj ysw „ j r (C ) (D) x= (C ) (D) x= x= ‰ : — (D) / (C ) g / r y = a + bx ™š› œ  ž‰Ÿ ¡ ¢£ ¤rœ a + bx ¥¦*rŸ œ¥-§ Ÿ ”–|l ” ii n k†k†„„ ruru„•„•— ppqsqsrr – rDr† k_k { l { „ ˜ lj ‹ r n z — rr –‰;l h;ij k i i n ru„ {s„ iz i nutŒ‡ y r v ‹ r n k l ‰ O.. y =− x h+j h+j– Š — t z i|„ Š – ˜  — — z i|„ – – r† k qŠ o i r†ns.‹†qu r f x= f (x) = − x + ( − a)x + ( a − )x y + x y ε(x), lim ε(x) = prq x→ : f (x) = − x + ( − a)x + ( a − )x y + x y ε(x) : —;š ll 7w k~n ru„ v j n ru„®z ƒ w pq t k†j oxi w n&o ysrgt z t k t|n nu‡ r n k~r ‰l1 nx‚ n z tg‹ i;qx‰„ rl o r t q${|i;j n k h+j ‰ Š ‰$t z i|„ r† k t q o r†..i;qu o r l f x= g I a= f (x) − y ' ( a − )x y = x y moh+_ƒj ngj n o rDj k ’xjoxi Štxn;n l ‹ ‰ r ‹Œr t } {siq|„ ‰$t –u pqsr&z r&{|i;j tn k o ‰ ‰ r† k!o q n {sijl n k x o ƒ t { ‹ t j.„7~r„ t {|{|i|„ k ‰ ‚ rDk_{s„ wŒ‹ t j q.ruy „ i;Š;j~r†j nsz i tun ‡ r z r†o r yut z ruqx„ ‰l o r z t {|isDj k†j i n „ rˆz t k†j y r o r g / x= g 0( ) x > f (x) − y > (C ) x (D) (D) / (C ) g x< f (x) − y < (C ) (D) h+h+jj– oxt|n – ŠŠ ‹ ‹Œt ‰t zz ixix „„ – r†r† kk ˜ t qq o r†r†...i†q;ˆqu or r "/ x= a a= ( , ) (C ) (D) x= ¨ I a 6= f (x) − y ' ( − a)x – ‰t t o o x a> f (x) − y < (C ) x (D) a< f (x) − y > (C ) (D) \]$^_ `]a  LZd $ ` a   ª© ¬« w­®­¯ ±° ³²µ´° \]$^_ `]a  Ld Y$ `]a   ª© ¬« ­å­ã¯ ±° æ²ç´° h;ij k rDk Š r hi v&v r o r† oYl z € r oYl z o r f (x) = Pn (x) + x n ε(x) z‚ ƒ ix„ o „ r tˆt y q y‹ i;j lY o r g (x) = Qn (x) + x n ε(x) lim ε(x) = x→ ‰ ‰;lr† k “ ’sr {xz r hr† i;k_j k vq { „ – Dk†„ rg„ ruz ˜ rDk — š ˜ — Š;i n–|l  i t nxntxrˆv „®z r w ‰l o r  : f (x) + g (x) n x= : É f (x) = z − x + ax + x y ε(x) g (x) = − x + è x − x y + x y ε(x) a tˆy „ ri ‹ o q|j k o r† oYl z € r oYl z o r l ‚ z ƒ ix„ o „ r t q y i;j lo r —;š l  i nx{sn i|rˆ.r„®z r ‰ o r ll ¶E·+¸ ¹Oºº»+¼E»i¼*» ½ ¾¿E¹OÀ Á* ÃOº2» ¸¼*» f (x) + g (x) = S(x) + x n ε(x), ¼*» Ä*Å Æ » ¸ ǽ*¿E¹*À ÁE Ã*º»¼*»¼*» Ä*Å Æ ‰ r† k ≤n DL ( ) f (x) + g (x) ≤ nÈ y l m_n S(x) = Pn (x) + Qn (x) DL ( ) f (x) · g (x) p y  : f (x) · g (x) n x= : F (x) = f (x ) E¶ »+¿ Å ¹O¼O½EÊ Ç2¼E»i¼E» ½ ¾¿E¹*À Á* ÃOº2» ¸¼E» g (x ) Ø é k~i ru„ v r† o i r†n kk!z r†z rg_{{sxi;q|zj .nut|Ž;nsv ‹ r_r† i k~r n l1q € r†‚ { t t qˆ„ k†k†„j „rDko q~ru{s„ v „ i r†o qx.ij k n k v j oxt|n z r† ¼E» ÄOÅ Æ » ¸ ǽE¿E¹*À Á* ÃOº2»i¼E»i¼E» ÄOÅ Æ f (x) · g (x) = Tn (x) + x n ε(x), ≤n é*Óí ê ë Ïà"à-ÒÐ‡Í Ò 0 DLì ( Ù ) Ñ"Ò F (x) Ø ≤ Ë nÈ é ê ë F (Ù ) í CÉ Ïà"à-ÒÐ Ø Tn (x) / Pn (x) · Qn (x) ê î ÔÕ Ô-Ó Ó Ó (D) Ó Ô (C ) Fñ ä ÐÏ ÒÐ‰Í Î ïÞ ÚÖ Ïà!Ñ Ò(Í Ú  à ð ÒàÚ*Ò â Ó â Ó Õ (C ) â Ó ÌÓ Í â â ä Ï Ð Ò (D) Ó Ô! Ñ"Ò Õ OÒ Ú Ó  j y j †j i n&o r† oYl z h+j ‰ ‰ Š1z r oYl z o r ≤n x n ε(x) Ð ïäÖ ×*ÒÐ‡Í Ï-×Ö ÚÖ ÏàÐ ÒÍ ÚÖ Ò" Ñ Ò Ð‰Ð Ï ÐÚ Ì " ÏÖ ×Ö à ð Ò x = ÙCñ Ô Õ-Ó ÕÓ Ô a Ñ"Ò × Ö àÚÍ Ò× ÍÒ Ð × " Ñ Ò Ø f (x ) ò  : g ( ) 6= n Ó ÔÕ x=Ù ë DLì (Ù ) f (x) + g (x) g (x ) ÌÍ Î Ï"Ð ÑCÐ Ò ÏÖ ×ØCÑ"Ò ò Ø Ïà"à-ÒÐ‡Í Ò Ñ Ò Ø ò ì  ì Ò× ÚÛ f (x) + g (x) = − x + ax ó + U − ô x + õ x ó − U x + x ε(x) Ø ì ì Ü  =ô − õ x + (a + õ )x ó − U x + x ε(x) f (x ) Pn (x ) Rn (x ) Ø = Tn (x) + x n ε(x), Ó Ô = Tn (x) + U ë DLì (Ù ) f (x) · g (x) g (x ) ÒÝ ÐÞ Ò(Û Qn (x ) Qn (x ) Ø Ïà"à-ÒÐ‡Í Ò Ñ Ò  Ø ò ì  ì U f (x) · g (x) = − x + ax ó · U − ô x + õ x ó − U x + x ε(x) Ø Tn Ô n Ó Õ Pn (x) â Ó Qn (x) = ö − ÷ x + ø x ù − ö x ú −û x + ü x ý − þ x ÿ + û ax ý − ü ax ÿ +x ÿ ε(x) ÏCß Ò× ÚÍ ÒÞ ÏÚÖ ÒàÚ á Ì Ñ2Î Ï Ð C Ñ ÐÒ Ñ Ò!Í ÑCÖ Ö ×OÖ ÏàáÑ"Ò " Ð Ô  Õ Ó â Ô Ó Ó x ì ì × Ö  à ÚãÍ Ò× Ö ×E× à-äÒ× ä Ð ÏÖ ×E×  à Ú*Ò× "Ñ Ò Ø = U − x + (  + U a)x ó − (  + ô a)x + x ε(x) Ø \]$^_ `]a  LZd $ ` a   ª© ¬« w­®­¯ ±° ³²µ´°           !"#DL   y (  )"  &F" (x )' ")(  " " "*+ " "  "*  ˜ ˜ $ %$ $ $% $ $ x , - /  / − x + ax − x + 0 x − xy - 1 x3 3a 1  − + 62 x − 7 x ó − x ì 2 + + 2 − 45 x ó + 6 − 149 x ì a . 2 + (a − 7 )x ó + x ì & x x3 − 2 + 6 T − xì x ! @ x< < a − : =  x B + x B ε(x ) F (x ) = ;: + + ; − => x ? +   a − 4 xó 3  a :A 3  − a − 4 x ó + 8 2 − 45 x ì a  1  6 2 a − 5 4 xì C D+E  0  F1 (  ) C D+ 3GF F 0 ( ) = 8 FIH J!KMLO N PQR+S NT U VWXQ!YZ [ P\#]S^T Y'Z Y\_ S \Z S (D ) ` T Y&JPQN a+S (C ) ] S F b S Z)c+N VJ+[ d S+NT Y c+P d [ Z [ P\eN S+T YZ [ R+S)] S (C ) c!Y+NN Ycc+PN Z ` (D ) YQ)R+P[ d [ \+Y_ S)]S x = fb dQ [ R Y\Z T SdgR YT S+QN dg] S a F 1 8 FIH J!K y = 2 + x3F  hi a = jk*l m n o p F (x ) − y = x q ε(x ) r sutevwtw x yz {}|yt~)+€+y~{‚tƒ|„ &†‡Xˆ ‚t‰t€ƒŠ€‡ )Šy ~&Šx w  „ ~ € xgz y‹Š‚~„ „ ‚t x €z y+„ Œ+€OŽ'x |x €^‹t€e~‡ e&Šy ~&„ zu‘ y‡ )yz z €x“’ƒ‡tƒ‚x |Xx €~‡Šwx „ €‡x  > ¡}œ ¢ a > –—g£ š¤ ¥ (C ) ¦ œ §u˜ ¨ © £ ¦ œ œ ¨ œ £ ¦ (D ) až    ”• a 6= –—*˜ ™ š › œ F (x ) − y ' − –Ÿ x < ¡}œ ¢ a < –—g£ š¤ ¥ (C ) ¦ œ §u˜ ¨ © £ ¦ œ œ š¨ œ £ ¦ (D )

Use Quizgecko on...
Browser
Browser