Physics for Engineers 2 Reviewer PDF

Summary

This document is a reviewer for Physics for Engineers 2, specifically focusing on fluid mechanics. It introduces concepts like fluid, fluid statics, fluid dynamics, and density, along with relative density, which is also known as specific gravity. The document also provides the corresponding formulas.

Full Transcript

**\[M1S1\]** **FLUID STATICS** **TERMINOLOGIES** - **FLUID** - Any substances or gas that flows. - **FLUID MECHANICS** - A study that deals with the behavior of fluids. - **FLUID STATICS** - Study of fluids at rest or in equilibrium. - **FLUID DYNAMICS** - Study of fluids i...

**\[M1S1\]** **FLUID STATICS** **TERMINOLOGIES** - **FLUID** - Any substances or gas that flows. - **FLUID MECHANICS** - A study that deals with the behavior of fluids. - **FLUID STATICS** - Study of fluids at rest or in equilibrium. - **FLUID DYNAMICS** - Study of fluids in motion. **DENSITY** Density is the mass of the substance over the volume. It defines how compact the molecules are. +-----------------------------------------------------------------------+ | **FORMULA** | +=======================================================================+ | \ | | [\$\$\\mathbf{\\rho =}\\frac{\\mathbf{m}}{\\mathbf{V}}\$\$]{.math | |.display}\ | +-----------------------------------------------------------------------+ | Where: | | | | \ | | [*ρ* = *Density* (*kg**cm*^3^)]{.math.display}\ | | | | \ | | [*m* = *Mass* (*kg* *or* *g*)]{.math.display}\ | | | | \ | | [*V* = *Volume* (*m*^3^ or c*m*^3^)]{.math.display}\ | +-----------------------------------------------------------------------+ As long as the two objects had the ***same material***, even if they have ***different mass***, their ***density is the same***. **RELATIVE DENSITY** is the ratio of the measured density to the density of water or any reference density. It is also called as **SPECIFIC GRAVITY**. +-----------------------------------------------------------------------+ | **FORMULA** | +=======================================================================+ | \ | | [\$\$\\mathbf{\\rho}\_{\\mathbf{r}}\\mathbf{=}\\frac{\\mathbf{\\rho}\ | | _{\\mathbf{x}}}{\\mathbf{\\rho}\_{\\mathbf{w}}\\mathbf{\\ | | or\\ 1000\\ kg/}\\mathbf{m}\^{\\mathbf{3}}}\$\$]{.math.display}\ | +-----------------------------------------------------------------------+ | Where: | | | | \ | | [*ρ*~*r*~ = *Relative* *Density*]{.math.display}\ | | | | \ | | [*ρ*~*x*~ = *Measured* *Density*]{.math.display}\ | | | | \ | | [*ρ*~*W*~ = Water Density]{.math.display}\ | +-----------------------------------------------------------------------+ - If the density is less than 1, the less dense the object is [**(ρ** **\** **1)**]{.math.inline}**.** ***Note: Relative means may reference siya.*** +-----------------------------------+-----------------------------------+ | **ADDITIONAL FORMULA** | | +===================================+===================================+ | Uniform | \ | | | [**V** **=** **Bh**]{.math | | |.display}\ | +-----------------------------------+-----------------------------------+ | Patusok (Cone) | \ | | | [\$\$\\mathbf{V | | | =}\\frac{\\mathbf{1}}{\\mathbf{3} | | | }\\mathbf{\\text{Bh}}\$\$]{.math | | |.display}\ | +-----------------------------------+-----------------------------------+ | Pabilog (Sphere) | \ | | | [\$\$\\mathbf{V | | | =}\\frac{\\mathbf{4}}{\\mathbf{3} | | | }\\mathbf{\\pi}\\mathbf{r}\^{\\ma | | | thbf{3}}\$\$]{.math | | |.display}\ | +-----------------------------------+-----------------------------------+ | Where: | | | | | | \ | | | [*B* = *Base*]{.math.display}\ | | | | | | \ | | | [*h* = *Height*]{.math.display}\ | | +-----------------------------------+-----------------------------------+ **DENSITY OF SOME COMMON SUBSTANCES** ![](media/image2.png) **EXAMPLES** 1. Find the mass and weight of the air at [20℃]{.math.inline} in a living room with a 4.0 m by 5.0 m and a ceiling at 3.0 m high. a. If height will be doubled, what will happen to mass? +-----------------------------------------------------------------------+ | Given: | | | | \ | | [*V*~room~ = 4 × 5 × 3 = 60 *m*^3^ *ρ*~air~ = 1.20 *kg**m*^3^)]{.math.inline} +-----------------------------------------------------------------------+ | Given: | | | | \ | | [*D* = 0.01 *m*       *m* = 3 *kg*     *ρ*~steel~ = 7.8  × 10^3^ *kg* | | *m*^2^ ]{.math.inline} +-----------------------------------------------------------------------+ | **FORMULA** | +=======================================================================+ | \ | | [\$\$\\mathbf{P =}\\frac{\\mathbf{F}}{\\mathbf{A}}\$\$]{.math | |.display}\ | +-----------------------------------------------------------------------+ | Where: | | | | \ | | [*P* = *Pressure* (*Pa*)]{.math.display}\ | | | | \ | | [*F* = *Force* (*N*)]{.math.display}\ | | | | \ | | [*A* = *Area* (*m*^2^)]{.math.display}\ | +-----------------------------------------------------------------------+ **FLUID PRESSURE** is the pressure in all direction of an object or fluid on the surface or bottom of a container. Properties: - The force exerted by fluid is always perpendicular to the surface. - The fluid pressure is directly proportional to depth (h) and density. - It applies same force in all direction. - It is independent of shape and area. +-----------------------------------------------------------------------+ | **FORMULA** | +=======================================================================+ | \ | | [**P** **=** **ρgh**]{.math.display}\ | +-----------------------------------------------------------------------+ | Where: | | | | \ | | [*P* = *Pressure* (*Pa*)]{.math.display}\ | | | | \ | | [*ρ* = *Density* (*kg**s*^2^]{.math.inline} | | | | \ | | [*h* = *Height* (*m*)]{.math.display}\ | +-----------------------------------------------------------------------+ **ATMOSPHERIC PRESSURE** [**(P**~atm~**)**]{.math.inline} is the pressure at the surface of the fluid in an open container. - [**P**~atm~ **=** **101.3** **kPa** **=** **100,** **300** **Pa**]{.math.inline} - [**P**~atm~ **=** **706** **torr** **=** **760** **mmHg**]{.math.inline} +-----------------------------------------------------------------------+ | **FORMULA** | +=======================================================================+ | \ | | [**P**~total~**=P**~atm~**+P**~gauge~]{.math.display}\ | | | | \ | | [**P**~total~**=P**~atm~ **+** **ρgh**]{.math.display}\ | +-----------------------------------------------------------------------+ | Where: | | | | \ | | [*P*~atm~ = *Atmospheric* *Pressure* (*Pa*)]{.math.display}\ | | | | \ | | [*P*~total~ = *Total* *Pressure*]{.math.display}\ | | | | \ | | [*ρ* = *Density* (*kg**s*^2^]{.math.inline} | | | | \ | | [*h* = *Height* (*m*)]{.math.display}\ | +-----------------------------------------------------------------------+ - The pressure underwater increases. This means that the pressure of the surrounding is greater than the object (human). [(*P*~*s*~ \> *P*~*o*~)]{.math.inline} - The pressure towards the space decreases. This means that the pressure of the surrounding is less than the object (human). [(*P*~*s*~ \

Use Quizgecko on...
Browser
Browser