Alcohols, Phenols, and Ethers PDF
Document Details
Uploaded by NimbleIntellect8149
Tags
Summary
This document provides a comprehensive overview of alcohols, phenols, and ethers, covering their classifications, common names, preparation methods, physical properties, and chemical reactions. It includes detailed explanations of various reactions, such as Williamson synthesis, and the effects of structure on properties like solubility and boiling points.
Full Transcript
# Alcohols, Phenols, and Ethers ## Classification - **OH attached to sp<sup>3</sup> carbon:** - **Normal alcohols:** - 1° : CH<sub>3</sub>-CH<sub>2</sub>-OH - 2° : CH<sub>3</sub>-CH(OH)-CH<sub>3</sub> - 3° : CH<sub>3</sub>-C(OH)(CH<sub>3</sub>)<sub>2</sub> - **Ally...
# Alcohols, Phenols, and Ethers ## Classification - **OH attached to sp<sup>3</sup> carbon:** - **Normal alcohols:** - 1° : CH<sub>3</sub>-CH<sub>2</sub>-OH - 2° : CH<sub>3</sub>-CH(OH)-CH<sub>3</sub> - 3° : CH<sub>3</sub>-C(OH)(CH<sub>3</sub>)<sub>2</sub> - **Allylic alcohols:** - CH<sub>2</sub>=CH-CH<sub>2</sub>-OH - **Benzylic alcohol:** - Ph-CH<sub>2</sub>-OH - **OH attached to sp<sup>2</sup> carbon:** - **Vinylic alcohols:** - CH<sub>2</sub>=CH-OH - **Phenols:** - Ar-OH ## Common Naming - **Alcohols:** - n-propyl alcohol - isopropyl alcohol - n-butyl alcohol - sec-butyl alcohol - tert-butyl alcohol - **Phenols:** - phenol - o-cresol - m-cresol - p-cresol - **Ethers:** - ethyl methyl ether - methyl phenyl ether (Anisole) - ethyl phenyl ether (Phenetole) - catechol - resorcinol - hydroquinone - quinol ## Preparation of Alcohols - **From Alkenes** - **Markovnikov Rule with rearrangement:** - Acidic hydrolysis of alkenes: CH<sub>3</sub>-CH=CH<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O → CH<sub>3</sub>-CH(OH)-CH<sub>3</sub> - Mechanism: - CH<sub>3</sub>-CH=CH<sub>2</sub> + H<sup>+</sup> → CH<sub>3</sub>-CH<sup>+</sup>-CH<sub>3</sub> - CH<sub>3</sub>-CH<sup>+</sup>-CH<sub>3</sub> + H<sub>2</sub>O → CH<sub>3</sub>-CH(OH)-CH<sub>3</sub> + H<sup>+</sup> - **From rearrangement**: CH<sub>3</sub>-CH=CH<sub>2</sub> + H<sup>+</sup>/H<sub>2</sub>O → CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-OH - **Anti-Markovnikov Rule without rearrangement:** - **Hydroboration-oxidation:** - CH<sub>3</sub>-CH=CH<sub>2</sub> + B<sub>2</sub>H<sub>6</sub>/THF → CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-BH<sub>2</sub> - CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-BH<sub>2</sub> + H<sub>2</sub>O<sub>2</sub>/OH<sup>-</sup> → CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-OH - **Mechanism (Syn addition):** - CH<sub>3</sub>-CH=CH<sub>2</sub> + BH<sub>3</sub> → CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-BH<sub>2</sub> - CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-BH<sub>2</sub> + H<sub>2</sub>O<sub>2</sub>/OH<sup>-</sup> → CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-OH + B(OH)<sub>3</sub> - **Oxymercuration-demercuration:** - CH<sub>3</sub>-CH=CH<sub>2</sub> + Hg(OAc)<sub>2</sub>/H<sub>2</sub>O → CH<sub>3</sub>-CH(OAc)-CH<sub>3</sub>, - CH<sub>3</sub>-CH(OAc)-CH<sub>3</sub> + NaBH<sub>4</sub>/OH<sup>-</sup> → CH<sub>3</sub>-CH(OH)-CH<sub>3</sub> - **Mechanism (Anti addition):** - CH<sub>3</sub>-CH=CH<sub>2</sub> + Hg(OAc)<sub>2</sub>/H<sub>2</sub>O → CH<sub>3</sub>-CH(OAc)-CH<sub>3</sub>-HgOAc - CH<sub>3</sub>-CH(OAc)-CH<sub>3</sub>-HgOAc + NaBH<sub>4</sub>/OH<sup>-</sup> → CH<sub>3</sub>-CH(OH)-CH<sub>3</sub> + Hg + OAc - **From alkyl halides to alcohols** - SN<sub>1</sub> Reaction: - CH<sub>3</sub>-CH<sub>2</sub>-Cl + aq. KOH → CH<sub>3</sub>-CH<sub>2</sub>-OH - **From carbonyl compounds** - **Reduction of Aldehyde and Ketone:** - R-CHO + [H] → R-CH<sub>2</sub>-OH - R-CO-R + [H] → R<sub>2</sub>-CH-OH - Reducing agent → Pt, Pd, Ni / H<sub>2</sub>, LiAlH<sub>4</sub>, NaBH<sub>4</sub>, B<sub>2</sub>H<sub>6</sub> - Mechanism: - CH<sub>3</sub>-CO-CH<sub>3</sub> + H<sup>-</sup> → CH<sub>3</sub>-CH(OH)-CH<sub>3</sub> - **Reduction of Carboxylic Acids and its derivatives:** - **Reduction of carboxylic acid:** - R-COOH + LiAlH<sub>4</sub>/H<sup>+</sup> → R-CH<sub>2</sub>-OH - **Reduction of acid chloride:** - R-COCl + LiAlH<sub>4</sub> → R-CH<sub>2</sub>-OH - **Reduction of ester:** - R-COOR + LiAlH<sub>4</sub>/H<sup>+</sup> → R-CH<sub>2</sub>-OH - **Reduction of amide:** - R-CONH<sub>2</sub> + LiAlH<sub>4</sub>/H<sup>+</sup> → R-CH<sub>2</sub>-NH<sub>2</sub> → R-CH<sub>2</sub>-OH - **Note:** - NaBH<sub>4</sub> only reduces aldehydes, ketones, acid chlorides - LiAlH<sub>4</sub> reduces *all* carbonyl compounds ## Physical Properties - **Solubility in Water:** - Lower alcohols are soluble in water: H-bond formation - Solubility decreases with increasing chain length: more nonpolar - Solubility decreases with branching: more nonpolar - **Boiling Point:** - B.P. increases with molecular weight: stronger London dispersion forces - Branching decreases B.P.: less surface area for interaction - B.P. of alcohols is greater than that of ethers and carboxylic acids: strong H-bonding - B.P. of ethers is greater than that of alkanes: dipole-dipole interactions ## Chemical Reactions - **Acidity of Alcohols:** - Acidity α -Iα +M +H - Phenols are more acidic than water and alcohols: resonance stabilization of phenoxide ion - **Reactions with Metals:** - 2R-OH + 2Na → 2R-ONa + H<sub>2</sub> - **Esterification:** - R-OH + R'-OH → R-OR' + H<sub>2</sub>O - Mechanism: - R-OH + H<sup>+</sup> → R-OH<sub>2</sub><sup>+</sup> - R-OH<sub>2</sub><sup>+</sup> + R'-OH → R-OR' + H<sub>3</sub>O<sup>+</sup> - **Reactions with Grignard reagent:** - R-Mg-X + R'-OH → R-H + Mg-X-OR' - **Reaction with HX:** - **Lucas test:** - R-OH + HX → R-X + H<sub>2</sub>O - **Mechanism:** - SN1 reaction: - Tertiary alcohols react fastest (30 min): more stable carbocation - Secondary alcohols react slower (5 min): less stable carbocation - Primary alcohols react slowest (1 min): unstable carbocation - **Reaction with PCl<sub>3</sub> and PCl<sub>5</sub>:** - SN2 reaction: - R-OH + PCl<sub>3</sub> → R-Cl + H<sub>3</sub>PO<sub>3</sub> - **Reaction with SOCl<sub>2</sub> (Darzen’s Process):** - SN2 reaction: - R-OH + SOCl<sub>2</sub> → R-Cl + SO<sub>2</sub> + HCl - **Mechanism:** - Inversion of configuration: - R-OH + SOCl<sub>2</sub> → R-OSO<sub>2</sub>Cl + HCl - R-OSO<sub>2</sub>Cl + Cl<sup>-</sup> → R-Cl + SO<sub>2</sub> + Cl<sup>-</sup> - **Dehydration of Alcohols:** - Elimination reaction: - CH<sub>3</sub>-CH<sub>2</sub>-OH + conc. H<sub>2</sub>SO<sub>4</sub> → CH<sub>2</sub>=CH<sub>2</sub> + H<sub>2</sub>O - **Mechanism:** - CH<sub>3</sub>-CH<sub>2</sub>-OH + H<sup>+</sup> → CH<sub>3</sub>-CH<sub>2</sub>-OH<sub>2</sub><sup>+</sup> - CH<sub>3</sub>-CH<sub>2</sub>-OH<sub>2</sub><sup>+</sup> → CH<sub>2</sub>=CH<sub>2</sub> + H<sub>3</sub>O<sup>+</sup> - **Reactivity of alcohols** - Tertiary alcohols are more reactive than secondary alcohols, which are more reactive than primary alcohols: carbocation stability - **Oxidation of alcohols:** - **Strong oxidizing agents:** - KMnO<sub>4</sub>/H<sup>+</sup>, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/H<sup>+</sup>, conc. HNO<sub>3</sub>, CrO<sub>3</sub>/ H<sub>2</sub>SO<sub>4</sub> - Primary alcohol → aldehyde → carboxylic acid - Secondary alcohol → ketone - **Mild oxidizing agents:** - Cu/300°C or red hot Cu, PCC (Pyridinium chlorochromate), PDC (Pyridinium dichromate) - Primary alcohol → aldehyde - Secondary alcohol → ketone - **Selective oxidation:** - MnO<sub>2</sub>: oxidizes allylic and benzylic alcohols to aldehydes and ketones. - 1° alcohols → aldehydes - 2° alcohols → ketones ## Tests for Alcohols - **Lucas Test:** - Tertiary alcohols react immediately: forms a cloudy white emulsion. - Secondary alcohols react in 5 minutes: forms a cloudy white emulsion. - Primary alcohols do not react: remains clear. - **Victor Meyer Test:** - Primary alcohols form red colored nitroalkane. - Secondary alcohols form blue colored nitroalkane. - Tertiary alcohols do not react. - **Dichromate Test:** - Primary and secondary alcohols react with dichromate reagent to give green Cr<sup>+3</sup> ions. - Tertiary alcohols do not react. # Ethers ## Preparation - **Williamson Synthesis:** - SN2 reaction: - R-X + R'-ONa → R-OR' + NaX - Conditions: - Primary alkyl halides are preferred as they react by SN2 mechanism. - Tertiary alkyl halides give elimination products. - Example: - CH<sub>3</sub>-CH<sub>2</sub>-Cl + CH<sub>3</sub>-ONa → CH<sub>3</sub>-CH<sub>2</sub>-O-CH<sub>3</sub> + NaCl - **Dehydration of alcohols:** - CH<sub>3</sub>-CH<sub>2</sub>-OH + conc. H<sub>2</sub>SO<sub>4</sub> → CH<sub>3</sub>-CH<sub>2</sub>-O-CH<sub>2</sub>-CH<sub>3</sub> + H<sub>2</sub>O - Conditions: - Primary alcohols react by SN2 mechanism at 140° C. - Secondary and tertiary alcohols give alkenes as products. - Example: - 2(CH<sub>3</sub>-CH<sub>2</sub>-OH) + conc. H<sub>2</sub>SO<sub>4</sub> → CH<sub>3</sub>-CH<sub>2</sub>-O-CH<sub>2</sub>-CH<sub>3</sub> + H<sub>2</sub>O ## Physical Properties - **Boiling Point:** - Lower than corresponding alcohols. - No H-bonding - **Solubility in Water:** - Low solubility. - No H-bonding ## Chemical Properties - **Cleavage of C-O bond in ethers:** - Ethers react with HX due to cleavage of C-O bond. - Mechanism: - Protonation of ether forms an oxonium ion. - Nucleophilic attack on the oxonium ion by halide ion give haloalkane and alcohol. - R-O-R + H-X → R-OH + R-X # Phenols ## Acidity: - Phenols are more acidic than water and alcohols due to the ability of the phenoxide ion to stabilize by resonance. - Alkyl groups decrease acidity: Electron donating effect - Electron withdrawing groups (like NO<sub>2</sub>) increase acidity: Electron withdrawing effect ## Reactions - **Reactions with Metals:** - 2C<sub>6</sub>H<sub>5</sub>-OH + 2Na → 2C<sub>6</sub>H<sub>5</sub>-ONa + H<sub>2</sub> - **Esterification:** - C<sub>6</sub>H<sub>5</sub>-OH + R-COCl → C<sub>6</sub>H<sub>5</sub>-OCOR + HCl - **Halogenation:** - C<sub>6</sub>H<sub>5</sub>-OH + Br<sub>2</sub>/H<sub>2</sub>O → C<sub>6</sub>H<sub>4</sub>(OH)Br + HBr - Mechanism: - -OH group is an ortho and para directing group, therefore, the major product is 2,4,6-tribromophenol. - **Nitration:** - C<sub>6</sub>H<sub>5</sub>-OH + dil. HNO<sub>3</sub> → C<sub>6</sub>H<sub>4</sub>(OH)NO<sub>2</sub> + H<sub>2</sub>O - Mechanism: - -OH group is an ortho and para directing group. - Major product: o-nitrophenol - Minor product: p-nitrophenol - **Sulphonation:** - C<sub>6</sub>H<sub>5</sub>-OH + conc. H<sub>2</sub>SO<sub>4</sub> → C<sub>6</sub>H<sub>4</sub>(OH)SO<sub>3</sub>H + H<sub>2</sub>O - Mechanism: - Major product: p-hydroxybenzene sulphonic acid - Minor product: o-hydroxybenzene sulphonic acid - **Friedel-Crafts alkylation:** - C<sub>6</sub>H<sub>5</sub>-OH + CH<sub>3</sub>Cl + AlCl<sub>3</sub> → C<sub>6</sub>H<sub>4</sub>(OH)CH<sub>3</sub> + HCl - Mechanism: - -OH group is an *ortho and para/director*. - Major product: p-cresol - Minor product: o-cresol - **Friedel-Crafts acylation:** - C<sub>6</sub>H<sub>5</sub>-OH + CH<sub>3</sub>COCl + AlCl<sub>3</sub> → C<sub>6</sub>H<sub>4</sub>(OH)COCH<sub>3</sub> + HCl - Mechanism: - -OH group is an *ortho and para/director*. - Major product: p-hydroxyacetophenone - Minor product: o-hydroxyacetophenone - **Kolbe's reaction:** - C<sub>6</sub>H<sub>5</sub>-OH + NaOH + CO<sub>2</sub> → C<sub>6</sub>H<sub>4</sub>(OH)COOH + H<sub>2</sub>O - **Reimer-Tiemann reaction:** - C<sub>6</sub>H<sub>5</sub>-OH + CHCl<sub>3</sub> + KOH(aq) → C<sub>6</sub>H<sub>4</sub>(OH)CHO + KCl + H<sub>2</sub>O - **Oxidation of phenols:** - C<sub>6</sub>H<sub>5</sub>-OH + K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/H<sup>+</sup> → C<sub>6</sub>H<sub>4</sub>O<sub>2</sub> (benzoquinone) - **Coupling reaction:** - C<sub>6</sub>H<sub>5</sub>-OH + N<sub>2</sub><sup>+</sup> → C<sub>6</sub>H<sub>5</sub>-N=N-C<sub>6</sub>H<sub>4</sub>-OH (p-hydroxyazobenzene) - Mechanism: - Diazonium salt couples with phenol to give an azo compound. ## Test for Phenols - **Neutral ferric chloride test:** - Phenols give a violet color with neutral FeCl<sub>3</sub> - Alcohols do not give this color reaction.