Algebra Past Paper Questions (ALGEBRA-A.pptx PDF)
Document Details
Uploaded by EnrapturedTroll2417
Polytechnic University of the Philippines
Tags
Related
- 10th Std Maths Midterm Exam 2024-25 (SSSC) PDF
- Maths Standard Class X Session 2024-25 Sample Question Paper PDF
- Hong Kong Baptist University Affiliated School Grade 7 Maths Chapter Test 3 PDF
- Sets PDF
- NDA-1-2023-Maths-Question-Paper PDF
- IX Maths Past Paper Jaycees Public School, Rudrapur 2024-25 PDF
Summary
This document contains multiple-choice questions covering various algebra topics, including function symmetry, significant figures, logarithms, and more. Suitable for secondary school mathematics practice.
Full Transcript
1. For a given function, it is found that f(t) = f(-t). What type of symmetry does f(t) have? A.Odd symmetry B.Even symmetry C.Rotational symmetry D.Quarter-wave symmetry 2. Which number has four significant figures? A.0.0014 B.0.01414 C.0.141 D.1.4140 3. Naperian logarithm hav...
1. For a given function, it is found that f(t) = f(-t). What type of symmetry does f(t) have? A.Odd symmetry B.Even symmetry C.Rotational symmetry D.Quarter-wave symmetry 2. Which number has four significant figures? A.0.0014 B.0.01414 C.0.141 D.1.4140 3. Naperian logarithm have a base closest to which number? A.2.17 B.2.72 C.3.14 D.10 4. If the second derivative of the equation of a curve is equal to the negative of the equation of that same curve, the curve is A.An exponential B.A sinusoid C.A tangent D.A parabola 5. To find the angle of triangle, given only the lengths of the sides, one would use A.The law of cosines B.The law of sines C.The law of tangents D.The inverse-square law 6. Which us true regarding the signs of the natural functions for angles between 90 deg to 180 deg? A. The tangent is positive B. The cotangent is positive C. The cosine is negative D. The sine is negative 7. What is the inverse natural function of the cosecant? A. Secant B. Sine C. Cosine D. Cotangent 8. The graphical presentation of a cumulative frequency distribution in a set of statistical data is called ____. A.Histogram B.Kurtosis C.Iepticurtic D.Ogive 9. A statement of truth of which follows with little or no proof from a theorem. A. Axiom B. Hypothesis C. Corollary D. Conclusion 10. It is a sequence of numbers such that the successive terms differ by a constant. A. Arithmetic progression B. Infinite progression C. Geometric progression D. Harmonic progression 11. A frequency curve which is composed of series of rectangles constructed with the steps as the base and the frequency as the height. A. Histogram B. Ogive C. Frequency distribution D. Bar graph 12. If the roots of an equation are zero, then they are classified as: A.Hyperbolic solution B.Zeros of function C.Extraneous roots D.Trivial roots 13. Convergent series is a sequence of decreasing number or when the succeeding term is _____ the preceding term. A.Greater than B.Equal to C.Lesser than D.None of the above 14. If a=b then b=a. This illustrates what axiom in algebra? A.Symmetric axiom B.Reflexive axiom C.Transitive axiom D.Replacement axoim 15. A and B are independent events. The probability that event A will occur is Pa and the probability that A and B will occur is Pab. From these two statements, what is the probability that event A.Pa – Pab B will occur? B.Pb – Pab C.Pa x Pb D.Pab/Pa 16. Two or more equations are equal if and only if they have the same A.Solution set B.Degree C.Order D.Variable set 17. In any square matrix, when the elements of any two rows are exactly the same, the determinant is: A.Zero B.Positive integer C.Negative integer D.Unity 18. The ratio or product of two expressions in direct or inverse relation with each other is called: A.Ratio and proportion B.Means C.Extremes D.Constant of variation 19. Is a sequence of terms whose reciprocals form an arithmetic progression? A.Geometric Progression B.Harmonic Progression C.Algebraic Progression D.Ratio and Proportion 20. An array of m x n quantities which represent a single number system composed of elements is rows and columns is known as: A.Transposed Matrix B.Cofactor of a Matrix C.Matrix D.Determinant 21. Binary number system is a system of notation for real number that uses the place value method with 2 as the base, What is another name of the A.Binary digits system? binary number B.Binumber system C.Dyadic number system D.Bits 22. The number 0.123123123123… is a/an A.Irrational Number B.Surd C.Rational number D.Trancendental 23. MCMXCIV is the Roman numeral equivalent to: A.1974 B.1984 C.1994 D.2994 24. A sequence of numbers where the succeeding term is greater than the preceding term is called: A.Dissonant series B.Convergent series C.Divergent series D.Isometric series 25. Terms that differs only in numeric coefficients are known as: A.Unlike terms B.Unequal terms C.Like terms D.Similar equations 26. In complex algebra, we use diagram to represent complex plane commonly called: A.Argand diagram B.Venn diagram C.Maxwell diagram D.Cartesian diagram 27. 7 + 0i is A.An irrational number B.Real number C.Imaginary number D.A variable 28. The number of successful outcomes divided by the number of possible outcomes is: A.Odd B.Combination C.Permutation D.Probability 29. If a two digit number has x for its unit digit and y for its tens digit, the number is represented as: A.x + y B.y - x C.10y + x D.10x - y 30. A statement if truth which is admitted without proof. A.Axiom B.Theorem C.Postulate D.Corollary 31. The part of theorem which is assumed to be true. A.Corollary B.Hypothesis C.Postulate D.Conclusion 32. A statement of truth which follows with little or no proof from the theorem. A.Corollary B.Axiom C.Postulate D.Conclusion 33. Refers to the construction of drawing of lines and figures the possibility of which is admitted without proof. A.Corollary B.Theorem C.Postulate D.Hypothesis 34. A mathematical statement which has neither been proved or denied by counterexamples. A.Fallacy B.Conjecture C.Theorem D.Paradox 35. A proved proposition which is useful mainly as preliminary to the proof of a theorem. A.Lemma B.Hypothesis C.Postulate D.Corollary 36. Axioms are propositions of a general logical nature (about equal or unequal) while _____ are propositions concerning objects and constructions. A.Theorems B.Corollaries C.Conclusions D.Postulates 37. A ____ is an ancillary theorem whose result is not target for the proof. A.Postulate B.Lemma C.Hypothesis D.Conclusion 38. Statements that are accepted without discussion or proof are called axioms. The word “axiom” comes from the Greek “axioma” which means: A.Worth B.Correct C.True D.Perfect 39. In mathematical and other fields of logical reasoning, axioms are used as basis for the formulation of statements called: A.Lemma B.Hypothesis C.Postulate D.Theorem 40. The product of two or more number is the same in whatever order they are multiplied. This refers to: A.Associative law of addition B.Associative law of multiplication C.Commutative law of multiplication D.Distributive law of multiplication 41. If a = b, then b can be replaced a in any equation. This illustrates what law of identity? A.Reflexive law B.Law of symmetry C.Transitive law D.Substitution law 42. If a = a, then it illustrates what law of identity? A.Reflexive law B.Law of symmetry C.Transitive law D.Substitution law 43. If a = b, and b = c, then a = c. This illustrates: A.Reflexive law B.Law of symmetry C.Transitive law D.Substitution law 44. The axiom which relates addition and multiplication is the _____. A.Commutative B.Associative C.Distributive D.None of the above 45. Any combination of symbols and numbers related by the fundamental operation of algebra is called a/an: A.Equation B.Algebraic expression C.Term D.Algebraic sum 46. The algebraic expression consisting a sum of any number of terms is called a: A.Multinomial B.Summation C.Binomial D.Monomial 47. An equation which is satisfied by all values of the variable for which the members of the equation defined is known as: A.Linear equation B.Rational equation C.Conditional equation D.Irrational equation 48. An equation which some or all of the known quantities are represented by letters is called: A.Redundant equation B.Literal equation C.Linear equation D.Defective equation 49. An equation in which the variable appear under the radical symbol. A.Irradical equation B.Irrational equation C.Linear equation D.Defective equation 50. An equation which, because of some mathematical process, has required an extra root is sometimes called as: A.Redundant equation B.Literal equation C.Linear equation D.Defective equation 51. Any equation which, because of some mathematical process, has fewer roots than its original is sometimes called as: A.Redundant equation B.Literal equation C.Linear equation D.Defective equation 52. An algebraic expression which can be represent as a quotient of two polynomials. A.Irrational algebraic expression B.Reduced algebraic expression C.Rational algebraic expression D.Complex algebraic expression 53. A statement containing one or more variables and having the property that it becomes either true or false when the variables are given specific values A.Solution from their domains. B.Problem C.Open sentence D.Worded problem 54. Any algebraic term is a/an ____ term in certain representing numbers if it consists of the product of possible integral powers of these numbers and A.Integral a factor not containing them. B.Rational C.Irrational D.Integral rational 55. An equation in x and y which is not easily solved for y in terms of x is called: A.Explicit B.Implicit function C.Discontinuity D.Quadratic 56. The numbers which are represented with letters A.Variables B.Unknowns C.Literal numbers D.Terms 57. Equations whose numbers are equal only for certain or possibly no value of the unknown. A.Conditional equations B.Inequalities C.Unconditional equations D.Temporary equations 58. An algebraic expression consisting of one term. A.Monomial I B.Binomial C.Linear D.Monomode 59. In algebra, this consists of products and quotients of ordinary numbers and letters which represent numbers. A.Expression B.Term I C.Equation D.Coefficient 60. An expression of two terms is called: A.Polynomial B.Duomial C.Binomial I D.All of the above 61. The degree of a polynomial equation is the: A.Maximum exponent B.Maximum sum of Iexponents C.Exponent of the first variable D.Maximum exponent of x 62. What is the degree of the polynomial 3x4y + 2x3z3 – 4yz2? A.6th I B.5th C.4th D.3rd 63. Any fraction which contains one or more fractions in either numerator or denominator, or both is called: A.Compound fraction B.Composite fraction C.Complex fraction I D.All of the above 64. A common fraction with unity for numerator and a positive integer as denominator (i.e. 1/n) A.Ordinary fraction B.Unit fraction I C.Common fraction D.Improper fraction 65. If the absolute value of the numerator of a fraction is smaller than the denominator, it is called: A.Proper fraction I B.Improper fraction C.Decimal fraction D.Mixed number 66. A number that consists of an integer part (which may be zero) and a decimal part less than unity that follows the decimal marker, which may be afraction A.Proper point or a comma. B.Improper fraction C.Decimal fraction I D.Mixed number 67. Considered as the “counting numbers”. A.Integers B.Rational numbers C.Irrational numbers D.Natural numbers I 68. A number represented by a non- terminating, no-repeating decimal. A.Irrational number I B.Rational number C.Natural number D.Integer 69. The completeness axiom proved that the real number system has numbers other than: A.Integers B.Rational numbersI C.Natural numbers D.Irrational numbers 70. The concept of spread of random variable or a set of observations. A.Variance B.Standard Deviation C.Dispersion I D.Range 71. A number containing a non- terminating but repeating decimal is a/an: A.Integer B.Rational number I C.Natural number D.Irrational number 72. A positive integer which has no perfect square factor greater than 1. A.Radical expression B.Square integer C.Square integer D.Square – free integer I 73. Numbers are used to describe a: A.Magnitude B.Position C.Magnitude and position I D.None of the above 74. Are symbols or combinations of symbols which describe a number. A.Numerals I B.Digits C.Terms D.Notations 75. Which of the following is not classified as an integers? A.Negative numbers B.Positive number C.Zero D.Imaginary numbers I 76. When an imaginary number is raised to an even exponent, it A.Becomes infinite B.Becomes negative imaginary number C.Becomes relatively I small number D.Becomes real number 77. The complex number is in the form a + bi. If a = 0, what do you call the resulting number? A.Absolute value of the complex number I B.Pure imaginary number C.Argument D.Irrational number 78. For a complex number a + bi, the real number is ________ of the complex number. A.Absolute value B.Magnitude C.Modulus D.All of the above I 79. The _____ of two complex number is found by multiplying each term of the one by every term of the other. A.Sum B.Difference C.Product I D.Quotient 80. A number which can be expressed as a quotient of two integers (division of zero excluded) is called: A.Irrational number B.Rational number I C.Imaginary number D.Real number 81. A prime number has exactly how many divisors? A.1 B.2 I C.3 D.4 82. A prime number is an integer greater than 1 which has: A.1 as its only positive divisor B.Itself as its only positive divisor C.1 and itself as I its only positive divisor D.1 and its additive inverse as its only positive divisor 83. An integer which is the product of two integers, both different from 1 and -1 is called: A.Prime number B.Composite numberI C.Rational number D.Compound number 84. A composite number has atleast _____ divisors. A.1 B.2 C.3 I D.4 85. Two natural numbers a and b are ____. If their greatest common divisor is 1. A.Relatively prime I B.Relatively composite C.Equal D.Reciprocal 86. Numbers used to count the objects or ideas in a given collection: A.Cardinal NumbersI B.Irrational Numbers C.Ordinal Numbers D.Numerals 87. Numbers which is used to state the position of individual objects in a sequence. A.Cardinal Numbers B.Irrational Numbers C.Ordinal Numbers I D.Numerals 88. An integer number that is equal to the sum of all its possible divisors except the number itself is called: A.Amicable number B.Perfect number I C.Defective number D.Redundant number 89. An integer the sum of all its possible divisors except the number itself is greater than the integer is called: A.Abundant numberI B.Perfect number C.Defective number D.Amicable number 90. An integer the sum of all its possible divisors except the number itself is less than the integer is called: A.Abundant number B.Amicable number C.Friendly number D.Defective numberI 91. What is the smallest perfect number possible? A.1 B.6 I C.12 D.8 92. All perfect numbers are: A.Even numbers I B.Odd numbers C.Prime numbers D.Composite numbers 93. Two integer numbers are said to be _____. If each is the sum of all possible divisors of the other. A.Perfect numbers B.Defective numbers C.Amicable numbersI D.Fermat’s numbers 94. What is another name for amicable numbers? A.Compatible numbers B.Friendly numbers I C.Fermats numbers D.Inconsistent numbers 95. What is the smallest pair of friendly number? A.180 and 190 B.200 and 120 C.220 and 284 I D.220 and 264 96. Prime numbers that appear in pair and differ by 2 ( eg. 3 and 5, 11 and 13 etc.) are called: A.Mersenne primes B.Prime number theorem C.Twin primes I D.Pseudo primes 97. “Every even integer greater than 2 can be written as the sum of two primes”. This is known as: A.Fermat’s last theorem B.Goldbach conjecture I C.Prime number theorem D.Mersenne primes 98. “Every positive integer greater than 1 is a prime or can be expresses as a unique product of primes and powers”. This is known as: A.Fundamental theorem I of arithmetic B.Pseudo prime theorem C.Prime number theorem D.Mersenne’s theorem 99. “Every sufficiently large off number can be expresses as a sum of three prime numbers”. This is known as: A.Goldbach conjecture B.Vinogradov’s theorem I C.Pascal’s law D.Mersenne’s theorem 100. The term “ratio” comes from Latin verb “ratus” meaning: A.To divide B.To estimate I C.To get the mean D.To make a proportion