Investments - GRA6534 PDF
Document Details
Uploaded by Deleted User
BI
Giovanni Pagliardi
Tags
Summary
This document provides lecture notes on investments, covering topics such as bond pricing, equity, housing, funds, and various financial concepts.
Full Transcript
Investments -- GRA6534 Innholdsfortegnelse {#innholdsfortegnelse.Overskriftforinnholdsfortegnelse} =================== [[Lecture 1] 2](#lecture-1) [[Overview of the Course] 2](#overview-of-the-course) [[Bonds] 2](#bonds) [[Equity & Housing] 2](#equity-housing) [[Funds] 2](#funds) [[Pricing di...
Investments -- GRA6534 Innholdsfortegnelse {#innholdsfortegnelse.Overskriftforinnholdsfortegnelse} =================== [[Lecture 1] 2](#lecture-1) [[Overview of the Course] 2](#overview-of-the-course) [[Bonds] 2](#bonds) [[Equity & Housing] 2](#equity-housing) [[Funds] 2](#funds) [[Pricing different Investments] 3](#pricing-different-investments) [[Risk-based explanation] 3](#risk-based-explanation) [[Behavioral explanation] 3](#behavioral-explanation) [[Risk-Expected Return relationship] 3](#risk-expected-return-relationship) [[Lecture 1 Videos] 5](#lecture-1-videos) [[Video -- Annuity, Geometric series] 5](#video-annuity-geometric-series) [[Video 2 -- Annuity, Final formula] 5](#video-2-annuity-final-formula) [[Video 3 -- Annuity due extension] 6](#video-3-annuity-due-extension) [[Video 4 -- Annuity generalization] 7](#video-4-annuity-generalization) [[Video 5 -- Perpetuity formula] 8](#video-5-perpetuity-formula) [[Video 6 -- Perpetuity due extension] 9](#video-6-perpetuity-due-extension) [[Lecture 2 Videos] 9](#lecture-2-videos) [[Consistency time-interest rate] 9](#consistency-time-interest-rate) [[Bond pricing] 10](#bond-pricing) [[Bond pricing exercise Holding Period Return (HPR)] 10](#bond-pricing-exercise-holding-period-return-hpr) [[Exercise Year-to-Maturity (YTM)] 11](#exercise-year-to-maturity-ytm) [[Lecture 2] 12](#lecture-2) [[Bonds] 12](#bonds-1) [[Bond Characteristics] 12](#bond-characteristics) [[Pricing] 12](#pricing) [[Accrued interest] 13](#accrued-interest) [[Yield to Maturity] 14](#yield-to-maturity) [[Lecture 3] 15](#lecture-3) [[What is the (expected) return on a bond?] 15](#what-is-the-expected-return-on-a-bond) [[No arbitrage bond pricing] 15](#no-arbitrage-bond-pricing) [[Relationship between inflation and bond pricing] 16](#relationship-between-inflation-and-bond-pricing) [[Interest rate risk] 17](#interest-rate-risk) [[Term structure of interest risk] 18](#term-structure-of-interest-risk) [[Expectations hypothesis vs Liquidity preference theory] 18](#expectations-hypothesis-vs-liquidity-preference-theory) [[Exam Question] 19](#exam-question) [[Videos lecture 3] 21](#videos-lecture-3) [[The term structure of interest rate] 21](#the-term-structure-of-interest-rate) [[Exercise forward rates] 21](#exercise-forward-rates) [[Exercise Expectation hypothesis] 22](#exercise-expectation-hypothesis) [[EH vs. LPT] 23](#eh-vs.-lpt) [[Exercise HPR] 23](#exercise-hpr) Giovanni Pagliardi [[Giovanni.pagliardi\@bi.no]](mailto:[email protected]) Office hours: Tuesday 13-14 & Wednesday 13-14 Office B4-013 Lecture 1 ========= Overview of the Course ---------------------- Et bilde som inneholder tekst, skjermbilde, Font, nummer Automatisk generert beskrivelse No Arbitrage: Key to find the value of any investment ### ### Bonds - Pricing - Term structure of interest rate ### Equity & Housing - Are returns predictable? ### Funds - Hedge funds - Open-end funds - Closed-end funds Pricing different Investments ----------------------------- ### Risk-based explanation - Rationality (Friedman,1953) ### Behavioral explanation - Overreaction - Overoptimism - Herzfeld Caribbean Basin (CUBA fund) ![Et bilde som inneholder tekst, line, skjermbilde, Plottdiagram Automatisk generert beskrivelse](media/image2.png) 1984, Shiller - Sophisticated investors wipe out mispricing **But Arbitrage can be [costly]:** - Interest rate - Liquidity costs (bid-ask spreads) - Possibility to replicate the position ### Risk-Expected Return relationship \ [\$\$E\\left\\lbrack r \\right\\rbrack = \\frac{E\_{t\\left\\lbrack \\text{Gai}n\_{t + 1} \\right\\rbrack}}{P\_{t}} = \\frac{E\\left\\lbrack P\_{t + 1} \\right\\rbrack - P\_{t}}{P\_{t}}\$\$]{.math.display}\ \ [\$\$= \\frac{E\\left\\lbrack P\_{t + 1} \\right\\rbrack}{P\_{t}} - 1 \$\$]{.math.display}\ \ [\$\$1 + E\\left( r \\right) = \\frac{\\left( E\\left\\lbrack P\_{t + 1} \\right\\rbrack \\right)}{\\left( P\_{t} \\right)}\$\$]{.math.display}\ \ [\$\$\\mathbf{P}\_{\\mathbf{t}}\\mathbf{=}\\frac{\\mathbf{E}\\left\\lbrack \\mathbf{P}\_{\\mathbf{t + 1}} \\right\\rbrack}{\\mathbf{1 +}\\mathbf{E}\\left\\lbrack \\mathbf{r} \\right\\rbrack}\$\$]{.math.display}\ **Expectation!** The Uncertainty around this **Must incorporate Risk** expectation is missing in the numerator Example +-----------------------+-----------------------+-----------------------+ | Lottery A -- Pays 100 | Lottery B -- | Lottery C | | for sure | [*P* = 0, 5]{.math | | | |.inline} | | +=======================+=======================+=======================+ | \ | \ | \ | | [\$\$P = | [*P* = 0, 5 = 0]{.mat | [*P* = 0, 5 = 100]{.m | | \\frac{100}{1 + | h | ath | | r\_{f}} = |.display}\ |.display}\ | | 38\$\$]{.math | | | |.display}\ | \ | \ | | | [1 − *P* = 0, 5 = 200 | [1 − *P* = 0, 5 = 300 | | | ]{.math | ]{.math | | |.display}\ |.display}\ | +-----------------------+-----------------------+-----------------------+ | | \ | \ | | | [*E*\[payoff\] = 100] | [*E*\[Payoff\] = 200] | | | {.math | {.math | | |.display}\ |.display}\ | +-----------------------+-----------------------+-----------------------+ | | Assume Investors are | | | | willing to pay 80 USD | | | | for Every 100 USD | | +-----------------------+-----------------------+-----------------------+ | | \ | \ | | | [\$\$80 = | [\$\$P = | | | \\frac{100}{1 + | \\frac{200}{1 + 0,25} | | | E\\left\\lbrack r | = 160\$\$]{.math | | | \\right\\rbrack} = |.display}\ | | | E\\left\\lbrack r | | | | \\right\\rbrack = | | | | 25\\%\$\$]{.math | | | |.display}\ | | +-----------------------+-----------------------+-----------------------+ | | | Lottery B and C is | | | | not equally risky. | | | | | | | | \ | | | | [StDe*v*~*B*~ = *StDe | | | | v*~*C*~]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ **Realized returns** [**≠**]{.math.inline} **Expected returns** 1. A statement on expected returns is always a statement on prices - 2. Expected returns are **[only]** determined by risk! +-----------------------------------+-----------------------------------+ | 1. Incorporate risk in the | 2. Use the [*r*~*f*~]{.math | | denominator |.inline} as the discount rate | +===================================+===================================+ | \ | \ | | [\$\$\\mathbf{P}\_{\\mathbf{t}}\\ | [\$\$\\mathbf{P}\_{\\mathbf{t}}\\ | | mathbf{=}\\frac{\\mathbf{E}\_{\\m | mathbf{=}\\frac{\\mathbf{E}\_{\\m | | athbf{t}}\\left\\lbrack | athbf{t}}\^{\\mathbf{Q}}\\left\\l | | \\mathbf{C}\\mathbf{F}\_{\\mathbf | brack | | {t | \\mathbf{C}\\mathbf{F}\_{\\mathbf | | + 1}} \\right\\rbrack}{\\mathbf{1 | {t | | +}\\mathbf{r}\_{\\mathbf{f}}\\mat | + 1}} \\right\\rbrack}{\\mathbf{1 | | hbf{+ | +}\\mathbf{r}\_{\\mathbf{f}}}\$\$ | | E}\\left\\lbrack | ]{.math | | \\mathbf{r}\_{\\mathbf{M}} |.display}\ | | \\right\\rbrack\\mathbf{+ | | | RP}}\$\$]{.math.display}\ | | +-----------------------------------+-----------------------------------+ | | \ | | | [**Q** **=** **Risk** **−** **neu | | | tral** **probability**]{.math | | |.display}\ | +-----------------------------------+-----------------------------------+ Lecture 1 Videos ================ ### Video -- Annuity, Geometric series 1. For every annuity, as well as for every perpetuity, we compute the present value [(PV)]{.math.inline} of this annuity, one period before the first coupon [(*C*~1~)]{.math.inline} \ [\$\$PV = \\frac{c}{1 + r} + \\frac{c}{\\left( 1 + r \\right)\^{2}} + \\frac{c}{\\left( 1 + r \\right)\^{3}} + \\ldots + \\frac{c}{\\left( 1 + r \\right)\^{n}}\$\$]{.math.display}\ 2. We need to factor out the first term, [\$(\\frac{c}{1 + r})\$]{.math.inline} \ [\$\$PV = \\frac{c}{1 + r} + \\frac{c}{\\left( 1 + r \\right)\^{2}} + \\frac{c}{\\left( 1 + r \\right)\^{3}} + \\ldots + \\frac{c}{\\left( 1 + r \\right)\^{n}}\$\$]{.math.display}\ \ [\$\$\\frac{c}{\\left( 1 + r \\right)}\*\\left\\lbrack 1 + \\frac{1}{1 + r} + \\frac{1}{\\left( 1 + r \\right)\^{2}} + \\ldots + \\frac{1}{\\left( 1 + r \\right)\^{n - 1}} \\right\\rbrack\$\$]{.math.display}\ A geometric series is one series according to which the ratio between two successive terms, is always constant. [\$\\frac{C\_{2}}{C\_{1}} = one\\ Constant = Lambda(\\lambda)\$]{.math.inline} \ [\$\$\\lambda = \\frac{1}{1 + r}\$\$]{.math.display}\ \ [1 + *λ* + *λ*^2^ + ... + *λ*^*n* − 1^]{.math.display}\ \ [*λ*^0^]{.math.display}\ \ [\$\$\\lambda\^{0} + \\lambda\^{1} + \\lambda\^{2} + \\ldots + \\lambda\^{n - 1} = \\sum\_{K = 0}\^{n - 1}\\lambda\^{K} = \\frac{1 - \\lambda\^{n}}{1 - \\lambda}\\ with\\ \\lambda = \\frac{1}{1 + r}\$\$]{.math.display}\ ### Video 2 -- Annuity, Final formula \ [\$\$PV = \\frac{c}{1 + r} + \\frac{c}{\\left( 1 + r \\right)\^{2}} + \\frac{c}{\\left( 1 + r \\right)\^{3}} + \\ldots + \\frac{c}{\\left( 1 + r \\right)\^{n}}\$\$]{.math.display}\ \ [\$\$\\frac{c}{\\left( 1 + r \\right)}\*\\left\\lbrack 1 + \\frac{1}{1 + r} + \\frac{1}{\\left( 1 + r \\right)\^{2}} + \\ldots + \\frac{1}{\\left( 1 + r \\right)\^{n - 1}} \\right\\rbrack\$\$]{.math.display}\ \ [\$\$PV = \\frac{C}{1 + r}\*\\frac{1 - \\lambda\^{n}}{1 - \\lambda}\\ with\\ \\lambda = \\frac{1}{1 + r}\$\$]{.math.display}\ \ [\$\$\\frac{C}{1 + r}\*\\frac{1 - \\left( \\frac{1}{\\left( 1 + r \\right)\^{n}} \\right)}{1 - \\left( \\frac{1}{1 + r} \\right)} = \\frac{C}{1 + r}\*\\frac{\\frac{\\left( 1 + r \\right)\^{n}}{\\left( 1 + r \\right)\^{n}} - \\left( \\frac{1}{\\left( 1 + r \\right)\^{n}} \\right)}{\\frac{1 + r}{1 + r} - \\left( \\frac{1}{1 + r} \\right)} = \\frac{C}{1 + r}\*\\frac{\\frac{\\left( 1 + r \\right)\^{n} - 1}{\\left( 1 + r \\right)\^{n}}}{\\frac{1 + r - 1}{1 + r}}\$\$]{.math.display}\ \ [\$\$= \\frac{C}{1 + r}\*\\frac{\\left( 1 + r \\right)\^{n} - 1}{\\left( 1 + r \\right)\^{n}}\*\\frac{1 + r}{r}\$\$]{.math.display}\ \ [\$\$\\frac{C\\left\\lbrack \\left( 1 + r \\right)\^{n} - 1 \\right\\rbrack}{r\*\\left( 1 + r \\right)\^{n}} = \\frac{C\*\\left( 1 + r \\right)\^{n}}{r\*\\left( 1 + r \\right)\^{n}} - \\frac{C}{r\*\\left( 1 + r \\right)\^{n}}\$\$]{.math.display}\ \ [\$\$C\\left\\lbrack \\frac{1}{r} - \\frac{1}{r\\left( 1 + r \\right)\^{n}} \\right\\rbrack = PV\_{0}\$\$]{.math.display}\ ### Video 3 -- Annuity due extension If the first payment is given at [*time* = 0]{.math.inline} Everything else stays the same, but remember, the [PV]{.math.inline} now goes to -1. We want the [PV]{.math.inline} to be presented in period {.math.inline}, not in [ − 1]{.math.inline}. \ [\$\$PV\_{- 1} = \\frac{c}{1 + r} + \\frac{c}{\\left( 1 + r \\right)\^{2}} + \\frac{c}{\\left( 1 + r \\right)\^{3}} + \\ldots + \\frac{c}{\\left( 1 + r \\right)\^{n}}\$\$]{.math.display}\ \ [\$\$\\frac{c}{\\left( 1 + r \\right)}\*\\left\\lbrack 1 + \\frac{1}{1 + r} + \\frac{1}{\\left( 1 + r \\right)\^{2}} + \\ldots + \\frac{1}{\\left( 1 + r \\right)\^{n - 1}} \\right\\rbrack\$\$]{.math.display}\ \ [\$\$PV = \\frac{C}{1 + r}\*\\frac{1 - \\lambda\^{n}}{1 - \\lambda}\\ with\\ \\lambda = \\frac{1}{1 + r}\$\$]{.math.display}\ \ [\$\$\\frac{C}{1 + r}\*\\frac{1 - \\left( \\frac{1}{\\left( 1 + r \\right)\^{n}} \\right)}{1 - \\left( \\frac{1}{1 + r} \\right)} = \\frac{C}{1 + r}\*\\frac{\\frac{\\left( 1 + r \\right)\^{n} - 1}{\\left( 1 + r \\right)\^{n}}}{\\frac{1 + r - 1}{1 + r}}\$\$]{.math.display}\ \ [\$\$= \\frac{C}{1 + r}\*\\frac{\\left( 1 + r \\right)\^{n} - 1}{\\left( 1 + r \\right)\^{n}}\*\\frac{1 + r}{r}\$\$]{.math.display}\ \ [\$\$\\frac{C\\left\\lbrack \\left( 1 + r \\right)\^{n} - 1 \\right\\rbrack}{r\*\\left( 1 + r \\right)\^{n}} = \\frac{C\*\\left( 1 + r \\right)\^{n}}{r\*\\left( 1 + r \\right)\^{n}} - \\frac{C}{r\*\\left( 1 + r \\right)\^{n}}\$\$]{.math.display}\ \ [\$\$C\\left\\lbrack \\frac{1}{r} - \\frac{1}{r\\left( 1 + r \\right)\^{n}} \\right\\rbrack\*\\left( 1 + r \\right) = PV\_{0}\$\$]{.math.display}\ ### Video 4 -- Annuity generalization \ [\$\$PV\_{1} = \\frac{c}{1 + r} + \\frac{c}{\\left( 1 + r \\right)\^{2}} + \\frac{c}{\\left( 1 + r \\right)\^{3}} + \\ldots + \\frac{c}{\\left( 1 + r \\right)\^{n}}\$\$]{.math.display}\ \ [\$\$\\frac{c}{\\left( 1 + r \\right)}\*\\left\\lbrack 1 + \\frac{1}{1 + r} + \\frac{1}{\\left( 1 + r \\right)\^{2}} + \\ldots + \\frac{1}{\\left( 1 + r \\right)\^{n - 1}} \\right\\rbrack\$\$]{.math.display}\ \ [\$\$PV = \\frac{C}{1 + r}\*\\frac{1 - \\lambda\^{n}}{1 - \\lambda}\\ with\\ \\lambda = \\frac{1}{1 + r}\$\$]{.math.display}\ \ [\$\$\\frac{C}{1 + r}\*\\frac{1 - \\left( \\frac{1}{\\left( 1 + r \\right)\^{n}} \\right)}{1 - \\left( \\frac{1}{1 + r} \\right)} = \\frac{C}{1 + r}\*\\frac{\\frac{\\left( 1 + r \\right)\^{n} - 1}{\\left( 1 + r \\right)\^{n}}}{\\frac{1 + r - 1}{1 + r}}\$\$]{.math.display}\ \ [\$\$= \\frac{C}{1 + r}\*\\frac{\\left( 1 + r \\right)\^{n} - 1}{\\left( 1 + r \\right)\^{n}}\*\\frac{1 + r}{r}\$\$]{.math.display}\ \ [\$\$\\frac{C\\left\\lbrack \\left( 1 + r \\right)\^{n} - 1 \\right\\rbrack}{r\*\\left( 1 + r \\right)\^{n}} = \\frac{C\*\\left( 1 + r \\right)\^{n}}{r\*\\left( 1 + r \\right)\^{n}} - \\frac{C}{r\*\\left( 1 + r \\right)\^{n}}\$\$]{.math.display}\ \ [\$\$C\\left\\lbrack \\frac{1}{r} - \\frac{1}{r\\left( 1 + r \\right)\^{n}} \\right\\rbrack\*\\left( 1 + r \\right)\^{- 1} = PV\_{0}\$\$]{.math.display}\ ### Video 5 -- Perpetuity formula \ [\$\$PV = \\frac{c}{1 + r} + \\frac{c}{\\left( 1 + r \\right)\^{2}} + \\frac{c}{\\left( 1 + r \\right)\^{3}} + \\ldots + \\frac{c}{\\left( 1 + r \\right)\^{n}} + \\ldots\$\$]{.math.display}\ \ [\$\$\\frac{c}{\\left( 1 + r \\right)}\*\\left\\lbrack 1 + \\frac{1}{1 + r} + \\frac{1}{\\left( 1 + r \\right)\^{2}} + \\ldots + \\frac{1}{\\left( 1 + r \\right)\^{n - 1}} + \\ldots \\right\\rbrack\$\$]{.math.display}\ \ [\$\$PV = \\frac{C}{1 + r}\*\\frac{1 - \\lambda\^{n}}{1 - \\lambda}\\ with\\ \\lambda = \\frac{1}{1 + r}\$\$]{.math.display}\ \ [\$\$\\lim\_{N \\rightarrow \\infty}\\frac{\\left( 1 - \\lambda \\right)\^{N}}{\\left( 1 - \\lambda \\right)} = \\frac{1}{1 - \\lambda}\\text{\\ if\\ }\\left\| \\lambda \\right\| \< 1\$\$]{.math.display}\ \ [\$\$\\frac{C}{1 + r}\*\\frac{1}{1 - \\left( \\frac{1}{1 + r} \\right)} = \\frac{C}{1 + r}\*\\frac{\\frac{1}{1 + r - 1}}{1 + r} = \\frac{C}{1 + r}\*\\frac{1 + r}{r}\$\$]{.math.display}\ \ [\$\$PV\_{0} = \\frac{C}{r}\$\$]{.math.display}\ ### Video 6 -- Perpetuity due extension \ [\$\$PV = \\frac{c}{1 + r} + \\frac{c}{\\left( 1 + r \\right)\^{2}} + \\frac{c}{\\left( 1 + r \\right)\^{3}} + \\ldots + \\frac{c}{\\left( 1 + r \\right)\^{n}} + \\ldots\$\$]{.math.display}\ \ [\$\$\\frac{c}{\\left( 1 + r \\right)}\*\\left\\lbrack 1 + \\frac{1}{1 + r} + \\frac{1}{\\left( 1 + r \\right)\^{2}} + \\ldots + \\frac{1}{\\left( 1 + r \\right)\^{n - 1}} + \\ldots \\right\\rbrack\$\$]{.math.display}\ \ [\$\$PV = \\frac{C}{1 + r}\*\\frac{1 - \\lambda\^{n}}{1 - \\lambda}\\ with\\ \\lambda = \\frac{1}{1 + r}\$\$]{.math.display}\ \ [\$\$\\lim\_{N \\rightarrow \\infty}\\frac{\\left( 1 - \\lambda \\right)\^{N}}{\\left( 1 - \\lambda \\right)} = \\frac{1}{1 - \\lambda}\\text{\\ if\\ }\\left\| \\lambda \\right\| \< 1\$\$]{.math.display}\ \ [\$\$\\frac{C}{1 + r}\*\\frac{1}{1 - \\left( \\frac{1}{1 + r} \\right)} = \\frac{C}{1 + r}\*\\frac{\\frac{1}{1 + r - 1}}{1 + r} = \\frac{C}{1 + r}\*\\frac{1 + r}{r}\$\$]{.math.display}\ \ [\$\$\\frac{C}{r}\*\\left( 1 + r \\right)\^{- 2} = PV\_{0}\$\$]{.math.display}\ Lecture 2 Videos ================ ### Consistency time-interest rate \ [\$\$\\left\\{ \\begin{matrix} \\text{Time\\ in\\ semesters} \\\\ i\_{\\text{annual}} = 3\\% \\\\ \\end{matrix} \\right.\\ \$\$]{.math.display}\ \ [1 \* (1+*i*~annual~)^1^ = 1 \* (1+*i*~6*m*~)^2^]{.math.display}\ \ [\$\${i\_{6m} = \\sqrt{1 + i\_{\\text{annual}}}\\ - 1 }{\\sqrt{1,03} - 1 = 0,0149 = 1,49\\%}\$\$]{.math.display}\ ### Bond pricing ---------------------------------------------------------------------------------------------------------------- T CR (annual) PAR \ Coupons paid [*R*~6*M*~]{.math.display}\ ---------- ----------------------- ------------------------------- ------------------------------ -------------- 10 years \ \ \ Every 6m [8%]{.math.display}\ [1 000*USD*]{.math.display}\ [3%]{.math.display}\ ---------------------------------------------------------------------------------------------------------------- \ [\$\$P = \\frac{40}{\\left( 1 + r \\right)\^{1}} + \\frac{40}{\\left( 1 + r \\right)\^{2}} + \\frac{40}{\\left( 1 + r \\right)\^{3}} + \\ldots + \\frac{40}{\\left( 1 + r \\right)\^{20}} + \\frac{1000}{\\left( 1 + r \\right)\^{20}} \$\$]{.math.display}\ \ [\$\$C\*\\left\\lbrack \\frac{1}{r} - \\frac{1}{\\left( r\*\\left( 1 + r \\right) \\right)\^{n}} \\right\\rbrack + \\frac{1000}{\\left( 1 + r \\right)\^{20}} =\$\$]{.math.display}\ \ [\$\$40\*\\left\\lbrack \\frac{1}{0,03} - \\frac{1}{0,03\*{\\left( 1 + 0,03 \\right))}\^{20}} + \\frac{1000}{\\left( 1 + 0,03 \\right)\^{20}} \\right\\rbrack = 1\\ 148,77\\ USD\$\$]{.math.display}\ ### Bond pricing exercise Holding Period Return (HPR) --------------------------------------------------------------------------------------------------------------- T CR (annual) PAR \ Coupons paid [*R*~6*M*~]{.math.display}\ --------- ----------------------- ------------------------------- ------------------------------ -------------- 3 years \ \ \ Every 6m [8%]{.math.display}\ [1 000*USD*]{.math.display}\ [4%]{.math.display}\ --------------------------------------------------------------------------------------------------------------- \ [*Cf*~0~ = (50,50,50,50,50,1050)]{.math.display}\ \ [\$\$HPR = \\frac{P\_{1} + C - P\_{0}}{P\_{0}}\$\$]{.math.display}\ \ [\$\$P\_{0} = \\frac{50}{\\left( 1 + r \\right)\^{1}} + \\frac{50}{\\left( 1 + r \\right)\^{2}} + \\frac{50}{\\left( 1 + r \\right)\^{3}} + \\frac{50}{\\left( 1 + r \\right)\^{4}} + \\frac{50}{\\left( 1 + r \\right)\^{5}} + \\frac{50}{\\left( 1 + r \\right)\^{6}} + \\frac{1000}{\\left( 1 + r \\right)\^{6}}\$\$]{.math.display}\ \ [\$\$P = C\*\\left\\lbrack \\frac{1}{r} - \\frac{1}{\\left( r\*\\left( 1 + r \\right) \\right)\^{n}} \\right\\rbrack + \\frac{1000}{\\left( r\*\\left( 1 + r \\right) \\right)\^{n}} \$\$]{.math.display}\ \ [\$\$P\_{0} = 50\*\\left\\lbrack \\frac{1}{0,04} - \\frac{1}{0,04\\left( 1 + 0,04 \\right)\^{6}} \\right\\rbrack + \\frac{1000}{\\left( 1 + 0,04 \\right)\^{6}}\$\$]{.math.display}\ \ [*P*~0~ = 1 052, 4 *USD*]{.math.display}\ \ [*Cf*~1~ = (50,50,50,50,1050)]{.math.display}\ \ [\$\$P\_{1} = \\frac{50}{\\left( 1 + r \\right)\^{1}} + \\frac{50}{\\left( 1 + r \\right)\^{2}} + \\frac{50}{\\left( 1 + r \\right)\^{3}} + \\frac{50}{\\left( 1 + r \\right)\^{4}} + \\frac{50}{\\left( 1 + r \\right)\^{5}} + \\frac{1000}{\\left( 1 + r \\right)\^{5}}\$\$]{.math.display}\ \ [\$\$P\_{1} = 50\*\\left\\lbrack \\frac{1}{0,04} - \\frac{1}{0,04\\left( 1 + 0,04 \\right)\^{5}} \\right\\rbrack + \\frac{1000}{\\left( 1 + 0,04 \\right)\^{5}}\$\$]{.math.display}\ \ [*P*~1~ = 1 044, 5 *USD*]{.math.display}\ \ [\$\$HPR = \\frac{P\_{1} + C - P\_{0}}{P\_{0}}\$\$]{.math.display}\ \ [\$\$HPR = \\frac{1044,5 + 50 - 1052,4}{1052,4} = 0,04 = 4\\%\$\$]{.math.display}\ ### Exercise Year-to-Maturity (YTM) ------------------------------------------------------------------------------------------------------------------ T CR (annual) PAR \ Coupons paid [*P*~0~]{.math.display}\ --------- ----------------------- -------------------------------- -------------------------------- -------------- 2 years \ \ \ Every year [8%]{.math.display}\ [1 000 *USD*]{.math.display}\ [1 000 *USD*]{.math.display}\ ------------------------------------------------------------------------------------------------------------------ \ [*CF* = (40, 1040)]{.math.display}\ \ [\$\$P\_{0} = \\frac{40}{\\left( 1 + YTM \\right)\^{1}} + \\frac{40}{\\left( 1 + YTM \\right)\^{2}}\$\$]{.math.display}\ \ [*Define* *x* = 1 + *YTM*]{.math.display}\ \ [\$\$1\\ 000 = \\frac{40}{\\left( x \\right)\^{1}} + \\frac{40}{\\left( x \\right)\^{2}}\$\$]{.math.display}\ \ [1000*x*^2^ = 40*x* + 1040]{.math.display}\ \ [1000*x*^2^ − 40*x* − 1040 = 0]{.math.display}\ \ [\$\$X\_{\\frac{1}{2}} = \\frac{40 \\pm \\sqrt{1600 + 4\*1000\*1040}}{2\*1000}\$\$]{.math.display}\ \ [\$\$\\frac{40 \\pm \\sqrt{2040}}{2000}\$\$]{.math.display}\ \ [*x*~1~ = − 1 ∨ *x*~2~ = 1, 04 ]{.math.display}\ \ [*x*~1~ = − 1 = 1 + *YTM* = \> *YTM* = − 2]{.math.display}\ \ [*x*~2~ = 1, 04 = 1 + *YTM* = \> *YTM* = 0, 04 = 4%]{.math.display}\ Lecture 2 ========= Recap Lecture 1 \ [\$\$P\_{t} = \\frac{\\sum\_{K}\^{}\\mathbb{E}\\left\\lbrack CF\_{t + k} \\right\\rbrack}{\\left( 1 + r \\right)\^{K}}\$\$]{.math.display}\ +-----------------------+-----------------------+-----------------------+ | Shock | Realized Return | Expected Return | +=======================+=======================+=======================+ | 1. Cash Flow Shock | \ | Does not (necessary) | | (+) | [ \> 0]{.math | change | | |.display}\ | | | | | | | | (Lottery B to C) | | +-----------------------+-----------------------+-----------------------+ | 2- Discount Rate | \ | Increase | | shock | [ \ 0]{.math.inline}) Long term interest rate is ONLY a function of future expected short- term interest rates [↓]{.math.inline} [(1+*r*~0, 2~)^2^ = (1+*r*~1, 2~)^1^ \* (1\**E*\[*r*~1, 2~\])^1^]{.math.inline} [ ]{.math.inline}No Risk Risk [Risk neutrality] Exam Question ------------- +-----------------------+-----------------------+-----------------------+ | | **EH** | **LPT** | +=======================+=======================+=======================+ | **Upward** | \ | !I don't know! | | | [*E*\[*r*~1, 2~\] \> | | | | *r*~1~]{.math | (Unless you observe | | |.display}\ | very steep term | | | | structure) | +-----------------------+-----------------------+-----------------------+ | **Flat** | \ | \ | | | [*E*\[*r*~1, 2~\] = * | [*E*\[*r*~1, 2~\] \