4. Consider a pool (25°C) in which the water has a sulphate concentration [SO₄²] of 28 mm and is in equilibrium with the minerals calcite (CaCO3) and anhydrite (CaSO4). a. Calcula... 4. Consider a pool (25°C) in which the water has a sulphate concentration [SO₄²] of 28 mm and is in equilibrium with the minerals calcite (CaCO3) and anhydrite (CaSO4). a. Calculate [Ca²⁺] concentration. b. Calculate [CO₃²⁻] concentration. c. Calculate the pH. 5. Surface water in full exchange with the atmosphere with a partial pressure of CO₂ (pCO₂) of 10⁻³·⁵ atm at 25°C. The dissociation constants (pK₁ and pK₂) are 6.35 and 10.33, respectively and Henry's constant (KH) = 10⁻¹·⁴⁷. a. Calculate the total inorganic carbon concentration (CT) in mM at a pH of 8.3 and 7.6. b. Calculate the total alkalinity in mM at a pH of 8.3 and 7.6. c. Calculate the carbonate alkalinity at a pH of 8. d. Calculate the Ca²⁺ concentration in mM if the water is in equilibrium with the mineral calcite (CaCO3) at a pH of 7.8. 6. Give 3 reasons why calcite (CaCO3) dissolves with increasing depth in the ocean.

Question image

Understand the Problem

The image contains three chemistry problems related to equilibrium, concentration calculations, and factors affecting the dissolution of calcite. Problem 4 involves calculating the concentration of calcium ions, carbonate ions, and the pH of a pool in equilibrium with calcite and anhydrite. Problem 5 involves calculating the total inorganic carbon concentration, total alkalinity, carbonate alkalinity, and calcium ion concentration in surface water. Problem 6 requires providing three reasons for the increasing dissolution of calcite with depth in the ocean. These questions involve applying principles of chemical equilibrium, acid-base chemistry, and thermodynamics.

Answer

4. a. $[Ca^{2+}] = 28 \text{ mM}$ b. $[CO_3^{2-}] = 1.61 \times 10^{-7} \text{ M}$ c. $pH = 8.77$ 5. a. At pH 8.3: $C_T= 1.07 \text{ mM}$, at pH 7.6: $C_T = 0.209 \text{ mM}$ b. At pH 8.3: $TA = 0.955 \text{ mM}$, at pH 7.6: $TA = 0.190 \text{ mM}$ c. $CA = 0.479 \text{ mM}$ d. $[Ca^{2+}] = 1.13 \text{ mM}$ 6. 1. Increased Pressure 2. Decreased Temperature 3. Increased $CO_2$ Concentration (Lower pH)
Answer for screen readers

a. $[Ca^{2+}] = 28 \text{ mM}$ b. $[CO_3^{2-}] = 1.61 \times 10^{-7} \text{ M}$ c. $pH = 8.77$

a. At pH 8.3: $C_T= 1.07 \text{ mM}$, at pH 7.6: $C_T = 0.209 \text{ mM}$ b. At pH 8.3: $TA = 0.955 \text{ mM}$, at pH 7.6: $TA = 0.190 \text{ mM}$ c. $CA = 0.479 \text{ mM}$ d. $[Ca^{2+}] = 1.13 \text{ mM}$

  1. Increased Pressure
  2. Decreased Temperature
  3. Increased $CO_2$ Concentration (Lower pH)

Steps to Solve

Problem 4

  1. Calculate [Ca²⁺] concentration

Since the pool is in equilibrium with both calcite ($CaCO_3$) and anhydrite ($CaSO_4$), the concentration of $Ca^{2+}$ is determined by the dissolution of anhydrite, because anhydrite is more soluble than calcite. Given that the sulphate concentration $[SO_4^{2-}]$ is 28 mM, this is equal to the $[Ca^{2+}]$. $$[Ca^{2+}] = [SO_4^{2-}] = 28 \text{ mM}$$

  1. Calculate [CO₃²⁻] concentration

The pool is in equilibrium with calcite, so we can use the solubility product ($K_{sp}$) of calcite to calculate $[CO_3^{2-}]$. The $K_{sp}$ for calcite is approximately $4.5 \times 10^{-9}$. $$K_{sp} = [Ca^{2+}][CO_3^{2-}]$$ Rearranging for $[CO_3^{2-}]$: $$[CO_3^{2-}] = \frac{K_{sp}}{[Ca^{2+}]} = \frac{4.5 \times 10^{-9}}{28 \times 10^{-3}}$$ $$[CO_3^{2-}] = \frac{4.5 \times 10^{-9}}{0.028} \approx 1.61 \times 10^{-7} \text{ M}$$

  1. Calculate the pH

To calculate the pH, we need to consider the equilibrium of carbonate ions with water. The relevant reaction is: $$CO_3^{2-} + H_2O \rightleftharpoons HCO_3^- + OH^-$$ We can calculate the $K_b$ for this reaction using the relationship $K_w = K_a \times K_b$, where $K_w = 1.0 \times 10^{-14}$. We need to use the $K_a$ of $HCO_3^-$, which is the second dissociation constant of carbonic acid, $K_2 = 10^{-10.33}$. $$K_b = \frac{K_w}{K_2} = \frac{1.0 \times 10^{-14}}{10^{-10.33}} = 10^{-3.67} \approx 2.14 \times 10^{-4}$$ Now, we can set up an ICE table: Initial: $[CO_3^{2-}] = 1.61 \times 10^{-7}$, $[OH^-] = 0$ Change: $[CO_3^{2-}] = -x$, $[OH^-] = +x$ Equilibrium: $[CO_3^{2-}] = (1.61 \times 10^{-7}) - x$, $[OH^-] = x$ $$K_b = \frac{[OH^-][HCO_3^-]}{[CO_3^{2-}]} = \frac{x^2}{1.61 \times 10^{-7} - x} \approx \frac{x^2}{1.61 \times 10^{-7}} = 2.14 \times 10^{-4}$$ Solving for $x$: $$x^2 = (2.14 \times 10^{-4}) \times (1.61 \times 10^{-7}) \approx 3.44 \times 10^{-11}$$ $$x = \sqrt{3.44 \times 10^{-11}} \approx 5.86 \times 10^{-6} \text{ M}$$ So, $[OH^-] = 5.86 \times 10^{-6}$.

Now calculate the pOH: $$pOH = -log[OH^-] = -log(5.86 \times 10^{-6}) \approx 5.23$$ Finally, calculate the pH: $$pH = 14 - pOH = 14 - 5.23 \approx 8.77$$

Problem 5

  1. Calculate the total inorganic carbon concentration ($C_T$) in mM at a pH of 8.3 and 7.6

The total inorganic carbon concentration ($C_T$) can be calculated using the following formula: $$C_T = [H_2CO_3^] + [HCO_3^-] + [CO_3^{2-}]$$ Where $[H_2CO_3^] = [CO_2(aq)] = K_H \times pCO_2$. Given $K_H = 10^{-1.47}$ and $pCO_2 = 10^{-3.5}$ atm: $$[H_2CO_3^] = 10^{-1.47} \times 10^{-3.5} = 10^{-4.97} \text{ M}$$ We can also express the other species in terms of $H_2CO_3^$: $$[HCO_3^-] = [H_2CO_3^] \times 10^{pH - pK_1}$$ $$[CO_3^{2-}] = [HCO_3^-] \times 10^{pH - pK_2} = [H_2CO_3^] \times 10^{(pH - pK_1) + (pH - pK_2)}$$ Now calculate for pH = 8.3: $$[HCO_3^-] = 10^{-4.97} \times 10^{8.3 - 6.35} = 10^{-4.97} \times 10^{1.95} = 10^{-3.02} \text{ M}$$ $$[CO_3^{2-}] = 10^{-3.02} \times 10^{8.3 - 10.33} = 10^{-3.02} \times 10^{-2.03} = 10^{-5.05} \text{ M}$$ $$C_T = 10^{-4.97} + 10^{-3.02} + 10^{-5.05} \approx 1.07 \times 10^{-3} \text{ M} = 1.07 \text{ mM}$$

Now calculate for pH = 7.6: $$[HCO_3^-] = 10^{-4.97} \times 10^{7.6 - 6.35} = 10^{-4.97} \times 10^{1.25} = 10^{-3.72} \text{ M}$$ $$[CO_3^{2-}] = 10^{-3.72} \times 10^{7.6 - 10.33} = 10^{-3.72} \times 10^{-2.73} = 10^{-6.45} \text{ M}$$ $$C_T = 10^{-4.97} + 10^{-3.72} + 10^{-6.45} \approx 2.09 \times 10^{-4} \text{ M} = 0.209 \text{ mM}$$

  1. Calculate the total alkalinity in mM at a pH of 8.3 and 7.6

The total alkalinity is given by: $$TA = [HCO_3^-] + 2[CO_3^{2-}] + [OH^-] - [H^+]$$ At pH = 8.3: $[H^+] = 10^{-8.3}$ M, $[OH^-] = 10^{-(14 - 8.3)} = 10^{-5.7}$ M $$TA = 10^{-3.02} + 2 \times 10^{-5.05} + 10^{-5.7} - 10^{-8.3} \approx 9.55 \times 10^{-4} \text{ M} = 0.955 \text{ mM}$$ At pH = 7.6: $[H^+] = 10^{-7.6}$ M, $[OH^-] = 10^{-(14 - 7.6)} = 10^{-6.4}$ M $$TA = 10^{-3.72} + 2 \times 10^{-6.45} + 10^{-6.4} - 10^{-7.6} \approx 1.90 \times 10^{-4} \text{ M} = 0.190 \text{ mM}$$

  1. Calculate the carbonate alkalinity at a pH of 8

Carbonate alkalinity ($CA$) is given by: $$CA = [HCO_3^-] + 2[CO_3^{2-}]$$ First, calculate $[H_2CO_3^]$: $$[H_2CO_3^] = K_H \times pCO_2 = 10^{-1.47} \times 10^{-3.5} = 10^{-4.97} \text{ M}$$ Now calculate $[HCO_3^-]$ and $[CO_3^{2-}]$: $$[HCO_3^-] = [H_2CO_3^*] \times 10^{pH - pK_1} = 10^{-4.97} \times 10^{8 - 6.35} = 10^{-4.97} \times 10^{1.65} = 10^{-3.32} \text{ M}$$ $$[CO_3^{2-}] = [HCO_3^-] \times 10^{pH - pK_2} = 10^{-3.32} \times 10^{8 - 10.33} = 10^{-3.32} \times 10^{-2.33} = 10^{-5.65} \text{ M}$$ $$CA = 10^{-3.32} + 2 \times 10^{-5.65} \approx 4.79 \times 10^{-4} \text{ M} = 0.479 \text{ mM}$$

  1. Calculate the $Ca^{2+}$ concentration in mM if the water is in equilibrium with the mineral calcite ($CaCO_3$) at a pH of 7.8

The $K_{sp}$ for calcite is approximately $4.5 \times 10^{-9}$. We know that $K_{sp} = [Ca^{2+}][CO_3^{2-}]$. We need to calculate $[CO_3^{2-}]$ at pH = 7.8. First calculate $[H_2CO_3^]$ $$[H_2CO_3^] = K_H \times pCO_2 = 10^{-1.47} \times 10^{-3.5} = 10^{-4.97} \text{ M}$$ Then calculate $[HCO_3^-]$ $$[HCO_3^-] = [H_2CO_3^*] \times 10^{pH - pK_1} = 10^{-4.97} \times 10^{7.8 - 6.35} = 10^{-4.97} \times 10^{1.45} = 10^{-3.52} \text{ M}$$ Then calculate $[CO_3^{2-}]$ $$[CO_3^{2-}] = [HCO_3^-] \times 10^{pH - pK_2} = 10^{-3.52} \times 10^{7.8 - 10.33} = 10^{-3.52} \times 10^{-2.53} = 10^{-6.05} \text{ M}$$ Now calculate $[Ca^{2+}]$ $$[Ca^{2+}] = \frac{K_{sp}}{[CO_3^{2-}]} = \frac{4.5 \times 10^{-9}}{10^{-6.05}} = 4.5 \times 10^{-2.95} = 1.13 \times 10^{-3} \text{ M} = 1.13 \text{ mM}$$

Problem 6

  1. Give 3 reasons why calcite ($CaCO_3$) dissolves with increasing depth in the ocean.

    • Increased Pressure: The solubility of calcite increases with increasing pressure. At greater depths, the higher pressure favors the dissolution of $CaCO_3$ to reduce the overall volume.
    • Decreased Temperature: The solubility of calcite generally increases as temperature decreases. Deep ocean water is colder than surface water, which promotes dissolution.
    • Increased $CO_2$ Concentration (Lower pH): At greater depths, the concentration of carbon dioxide ($CO_2$) increases due to the decomposition of organic matter and respiration by marine organisms. Increased $CO_2$ leads to a lower pH (more acidic conditions), which enhances the dissolution of calcite according to the reaction: $CaCO_3(s) + CO_2(aq) + H_2O(l) \rightleftharpoons Ca^{2+}(aq) + 2HCO_3^-(aq)$

a. $[Ca^{2+}] = 28 \text{ mM}$ b. $[CO_3^{2-}] = 1.61 \times 10^{-7} \text{ M}$ c. $pH = 8.77$

a. At pH 8.3: $C_T= 1.07 \text{ mM}$, at pH 7.6: $C_T = 0.209 \text{ mM}$ b. At pH 8.3: $TA = 0.955 \text{ mM}$, at pH 7.6: $TA = 0.190 \text{ mM}$ c. $CA = 0.479 \text{ mM}$ d. $[Ca^{2+}] = 1.13 \text{ mM}$

  1. Increased Pressure
  2. Decreased Temperature
  3. Increased $CO_2$ Concentration (Lower pH)

More Information

The interplay of pressure, temperature, and $CO_2$ concentration significantly impacts the marine carbonate system and the distribution of calcite in the ocean.

Tips

Problem 4:

  • Assuming that all the calcium comes from calcite.
  • Ignoring the effect of $CO_3^{2-}$ reacting with water to form $OH^-$. The approximation might not always be valid.

Problem 5:

  • Using incorrect formulas for total alkalinity or carbonate alkalinity.
  • Forgetting to convert units (e.g., keeping concentrations in M when the question asks for mM).
  • Not accounting for the effect of pH on the concentrations of different carbonate species.

Problem 6:

  • Not providing specific reasons related to the ocean environment.
  • Providing reasons without proper justification of how they affect calcite dissolution.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!